Please use this identifier to cite or link to this item: http://localhost:80/xmlui/handle/123456789/130
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUTTA, DEBASMITA-
dc.contributor.authorDEY, SATAVISHA-
dc.contributor.authorSARKAR, SUKALYA-
dc.date.accessioned2021-09-18T10:38:44Z-
dc.date.available2021-09-18T10:38:44Z-
dc.date.issued2021-09-18-
dc.identifier.issn2090-729X-
dc.identifier.urihttp://hdl.handle.net/123456789/130-
dc.description.abstractIn complex analysis Gamma function de ned by a convergent im- proper integral 􀀀(z) = 1Z 0 xz􀀀1e􀀀xdx; z being a complex number with a positive real part. Gamma function is the commonly used extension of the factorial function to complex numbers.The analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and non negative integers. In this paper our main aim is to derive the bicomplex version of Gamma function supported by relevant examples and some of its related properties, mostly with the help of idempotent representation and Ringleb decomposition of bicomplex numbers and bicomplex valued functions.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesElectronic Journal of Mathematical Analysis and Applications;Vol. 9(2) July 2021, pp. 273-287.-
dc.subjectcomplex analysisen_US
dc.subjectGamma functionen_US
dc.subjectmeromorphicen_US
dc.titleA NOTE ON GAMMA FUNCTION UNDER THE TREATMENT OF BICOMPLEX ANALYSISen_US
dc.typeOtheren_US
Appears in Collections:Journal Article

Files in This Item:
File Description SizeFormat 
Math - Debosmita5 - EJMAA.pdf356.61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.