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Controversy regarding transitions in systems with global symmetry group O(3) has attracted the attention 
of researchers and the detailed nature of this transition is still not well understood. As an example of such 
a system in this paper we have studied a two-dimensional Lebwohl Lasher model, using the Wolff cluster 
algorithm. Though we have not been able to reach any definitive conclusions regarding the order present 
in the system, from finite size scaling analysis, hyperscaling relations and the behavior of the correlation 
function we have obtained strong indications regarding the presence of quasi-long range order and the 
existence of a line of critical points in our system.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The symmetry of a disordered phase is broken by the order 
present in the phase below a phase transition. In many cases 
the symmetry which is being broken is continuous. The simplest 
continuous symmetry is that of rotations in a two-dimensional 
plane – the XY model. Thermal fluctuations depress order pa-
rameter present in a phase from its zero temperature maximum 
value. Mermin and Wagner established that long range order can 
[1–4] not appear for systems with continuous symmetry at finite 
temperature in space dimension d ≤ 2. This is the phenomenon 
of fluctuation destruction of long range order. The importance of 
such fluctuations is reduced in higher dimensions. A large num-
ber of vortices can destroy long range order and systems with 
continuous symmetry might have another type of transition gov-
erned by vortex binding–unbinding topological defects at definite 
positive temperature. This kind of topological phase transition is 
called Berezinskii, Kosterlitz and Thouless (BKT) transition. The 
two-dimensional XY model with global symmetry group O(2) ex-
hibits such topological transitions [5–7]. In this system quasi-long 
range order (QLRO) appears at low temperatures and the order pa-
rameter vanishes as a power law at the thermodynamic limit. The 
system has a line of critical points as is evident from the diver-
gence of the susceptibility of the system at all temperatures below 

* Corresponding author.
E-mail address: sudeshna.dasgupta10@gmail.com (S. DasGupta).

1 Retd. Professor.
http://dx.doi.org/10.1016/j.physleta.2015.11.023
0375-9601/© 2015 Elsevier B.V. All rights reserved.
TBKT (the Berezinskii–Kosterlitz–Thouless transition temperature). 
Another characteristic behavior of this transition is that at tem-
peratures just above the BKT transition the correlation length ξ
diverges as the essential singularity ξ ∼ exp(bt− 1

2 ) that is much 
stronger divergent than the second order transition power law 
ξ ∼ t−ν . However there is a controversy regarding phase transi-
tion in a system with global symmetry group O(3).

Various experiments on three-dimensional liquid crystals ex-
hibit a weak first order transition [8]. The Lebwohl Lasher (LL) 
model was designed for the 3D system, however the corresponding 
two-dimensional problem also has attracted the attention of re-
searchers and is still not well understood. The LL model is a model 
for a regular 2D liquid crystal [16]. It is based on a lattice version 
of the mean field model of Maier et al. [17] where the molecule 
experiences an attractive anisotropic interaction. This model is also 
referred to as a nematic n-vector model, the R Pn−1 model, in 
which to each lattice site is attached a direction in n-dimensional 
space. There is an interaction between nearest neighbors, which 
tends to make the corresponding directions parallel. In our system 
the uniaxial particles are placed at the sites of a square lattice and 
they interact through a nearest neighbor pair potential of the form

H = −
∑

<i, j>

P2(
−→
Si .

−→
S j) (1)

where the coupling constant has been absorbed in H and P2(x) =
(3x2 − 1)/2 is the second order Legendre polynomial. The first sig-
nificant Monte Carlo study of such system was done by Chiccoli et 
al. [9]. From the behavior of the specific heat their conclusion was 
for the absence of a true phase transition. However they were not 
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very conclusive about the nature of the phase transition. Kunz and 
Zumbach in 1992 [10] concluded in support of a BKT like topo-
logical phase transition. They did a numerical study of a nematic 
n-vector model which is called the R Pn−1 model and reported the 
transition temperature Tc = 0.356 for the R P 2 case.

Mondal and Roy in 2003 [11] studied the planar LL model and 
concluded that the model should present a continuous transition 
at TC = 0.547. Another work by Dutta and Roy [12] shows results 
in favor of a topological transition. Contrary to all these and many 
more numerical studies Paredes et al. in 2008 [13] reported a lack 
of QLRO phase in a LL liquid crystal and conjectured that the LL 
liquid crystal in two dimensions cannot experience a transition of 
the BKT type. The maximum system size on which they carried out 
their studies was 768 ×768. Almaraz et al. in 2010 [14] studied the 
phase transitions of the LL model when confined between planar 
slits of different widths. Recently in 2014 Tomita [15] did a low 
temperature study on two-dimensional continuous spin systems. 
Here a finite size scaling analysis suitable for distinguishing the 
critical behavior has been applied to the 2D XY , Heisenberg and 
R P 2 models and a fixed-scale-factor finite size scaling has been 
done which gives a criterion for judging a system as to whether it 
is in the critical region or in the pseudocritical region. The Hamil-
tonian of the R P 2 model differs from that of the LL model by a 
factor of 1.5 (P2(cosϑ) as opposed to cos2 ϑ ).

In the present communication we have revisited the problem 
of the appearance of the QLRO in the 2D LL model using extensive 
Monte Carlo simulations. For this purpose we have gone upto a 
lattice size as large as 2048 ×2048 which is much bigger than that 
used by Paredes et al. in their work [13]. To analyze our result we 
have used the technique of finite size scaling.

2. Method

Our work is based on the Monte Carlo simulation technique 
where we have used the Wolff cluster algorithm [20,21]. We have 
done simulations on lattices L × L for L = 128, 256, 512, 768, 896, 
1024, 1152, 1600 and 2048. All data for lattice size smaller than 
and equal to 1600 × 1600 were obtained after 106 Monte Carlo 
(MC) steps for equilibration of the system followed by another 106

MC sweeps for production. For the lattice size 2048 × 2048 larger 
runs were required and we have performed 3 × 106 MC sweeps 
for equilibration and another 106 MC sweeps for production. The 
total number of simulations performed are approximately 180 i.e. 
around 20 temperatures for each lattice size. The simulations were 
carried out on HP servers DL 360P with 8 core Intel Xeon pro-
cessors. We have obtained temperature dependence of different 
thermodynamic quantities like energy, specific heat, order param-
eter, susceptibility, Binder Cumulant and correlation function. The 
temperature range has been chosen to be sufficiently wide to cover 
the region of important thermodynamic changes.

3. Results and discussions

3.1. Data collapse of susceptibility

Standard finite size scaling theory for second order phase tran-
sition predicts [18,19] that the peak height (χ0) of the susceptibil-
ity curve scales as L

γ
ν where L is the lattice size and γ and ν are 

the susceptibility and correlation length exponents. Fig. 1 shows 
the plot of lnχ0 against ln L and we have obtained a linear fit. The 
slope of the line obtained gives us the ratio γ

ν = 1.655.
In the neighborhood of Tc and L � ξ where ξ is the correlation 

length the susceptibility behaves as

χ(T , L) = L
γ
ν χ̃

[(
T − 1

)
L

1
ν

]
(2)
TC
Fig. 1. Linear fit showing variation of susceptibility with system size. The line has a 
slope γ

ν = 1.655.

Fig. 2. Data collapse curves of susceptibility. Four system sizes have been used and 
the collapse has been designed to be best near T = TC . The fit shown gives TC =
0.526, ν = 1.01 and γ = 1.656.

where χ̃ is the scaled susceptibility [22]. By plotting χ(T , L)L− γ
ν

along Y axis and (1 − T
TC

)L
1
ν along X axis and by adjusting TC , the 

ratio of exponents γ
ν and 1

ν simultaneously the family of curves 
χ(T , L) can be collapsed on a single curve as shown in Fig. 2.

The value of critical exponents thus obtained is

TC = 0.526

ν = 1.01

γ = 1.656

3.2. Data collapse of order parameter

Similarly data collapse analysis of order parameter 〈P2〉 as 
shown in Fig. 3 is obtained by plotting m(T , L)L

β
ν along Y axis 

(here 〈P2〉 has been written as m) and (1 − T
TC

)L
1
ν along X axis. 

The corresponding scaling relation is given by

m(T , L) = L− β
ν m̃

[(
T

TC
− 1

)
L

1
ν

]
(3)

where m̃ is the scaling function and β is the order parameter ex-
ponent. The critical exponents obtained thus are

TC = 0.526
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Fig. 3. Data collapse curves of order parameter. Four lattice sizes have been used and 
maximum overlap has been designed to be near T = TC . The fit gives TC = 0.526, 
ν = 1.01 and β = 0.202.

Fig. 4. Value of TC obtained from the linear fit of temperatures at which suscepti-
bility has a maximum value (χ0) for different lattice sizes.

ν = 1.01

β = 0.202

The value of TC obtained by us may appear to be different from 
previously quoted results in the literature (e.g. [10]). This is due to 
the fact, as already mentioned above, that we have used a Hamil-
tonian which differs by a factor of 1.5 from the Hamiltonian used 
by Kunz and Zumbach in their work.

For the data collapse analysis of order parameter and suscepti-
bility we have used the higher lattice sizes.

A common method for circumventing the question of size of 
the critical region is to perform data collapse of the susceptibility 
curves at a single point, the point x0 at which the scaling function 
(in this case susceptibility) is a maximum. T0 is given by

T0 = TC (1 + x0L− 1
ν ) (4)

By plotting T0 vs. L− 1
ν as shown in Fig. 4 and obtaining the value 

of the intercept we get an estimate of Tc = 0.522. This value of 
TC nearly matches the value of Tc = 0.526 obtained from data 
collapse analysis of order parameter and susceptibility curves. The 
value of 1

ν is taken to be 0.99 which was obtained from data col-
lapse analysis of order parameter and susceptibility.
Fig. 5. Variation of correlation function with distance showing power law fits for 
T < Tc and exponential decay for T > TC . Two system sizes L = 1600, 2048 have
been plotted here.

3.3. Variation of correlation function

In Fig. 5 we have shown the pair correlation function for two 
lattice sizes 1600 × 1600 and 2048 × 2048. The pair correlation 
function is defined by

G(r) =< P2(cosγi j(r)) > (5)

where γi j is the angle between two particles which are at a dis-
tance r apart. In systems exhibiting quasi-long range order (QLRO) 
the correlation function decays according to a power law whereas 
in a disordered system it dies off exponentially. As can be seen 
from Fig. 5 it is evident that for the temperatures below TC =
0.526 (as predicted from the data collapse results) the decay ex-
hibits a power law behavior whereas for higher temperatures the 
decay of the correlation function becomes sharper and is closer to 
an exponential one.

3.4. Verification of hyperscaling relations

Using finite size scaling for the system susceptibility χ it is 
possible to estimate the value of correlation function exponent η
within the temperature range T ≤ TBKT . On a line of critical points 
χ should scale with the exponent ratio γ

ν which is related to η
through the hyperscaling relation

γ

ν
= 2 − η (6)

Using Eq. (6) and the value of the γ
ν ratio obtained from data 

collapse of susceptibility curves we estimate the value of η at TC =
0.526 to be 0.36.

Similarly from the hyperscaling relation

β = 1

2
(d − 2 + η)ν (7)

and the value of the ratio β
ν obtained from data collapse of order 

parameter curves we have estimated η at TC = 0.526 to be 0.40. 
Here d stands for the dimensionality of the system which in our 
case is 2.

The scaling relation

γ + 2β = dν (8)

is also satisfied. By replacing the ratios γ
ν and β

ν with those ob-
tained from data collapse of susceptibility and order parameter we 
get d = 2.056.
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Table 1
The γ

ν at different temperatures were obtained by plotting lnχ vs. ln L (as in Fig. 1
but using χ at the respective temperatures, instead of the peak values χ0). The 
exponent η has been obtained from the power law fits of G(r) vs r for L = 2048 and 
using the relation G(r) ∼ r−η(T ) . For these systems η varies little with temperature 
and the constant value has been taken. The last column is for testing to what extent 
the scaling law γ

ν + η = 2 is satisfied.

Temperature γ
ν η

γ
ν + η

0.5 1.79 ± 0.03 0.120 ± 0.001 1.91
0.505 1.80 ± 0.14 1.92
0.51 1.77 ± 0.03 1.89
0.515 1.89 ± 0.14 2.01
0.52 1.75 ± 0.09 1.87
0.525 2.17 ± 0.07 2.29
0.53 2.64 ± 0.07 2.76

The Josephson’s identity

α = 2 − dν (9)

yields α = −0.02 and the Rushbrooke relation

γ + 2β + α = 2 (10)

gives α = −0.056. The negative value of α obtained from both the 
relations is consistent with the cusp we observed in the specific 
heat curves (not presented in this paper).

3.4.1. Possibility of a line of critical points
Correlation function critical exponent η may depend on T on 

a line of critical points. An interesting result that we have come 
across here which has been highlighted in Table 1 is that the 
hyperscaling relation γ

ν +η = 2 is approximately satisfied on a pos-
sible line of critical points when we evaluate γ

ν by doing a linear 
fit of lnχ vs. ln L curve. This has been done for each temperature 
as shown in Table 1 so that we obtain the temperature variation 
of γ

ν . η has been calculated from a power law fit of correlation 
function G(r) at the same set of temperatures.

From the above data we can see that the hyperscaling relation 
holds till T = 0.525. This points towards the existence of a line of 
critical points. The power law decay of correlation function as has 
been discussed earlier also strongly points towards an existence of 
a line of critical points below a particular temperature.

3.5. Variation of correlation length with T

In Fig. 6 we have plotted the correlation lengths of system 
sizes L = 256, 512, 768, 896, 1024, 1152, 1600 and 2048 with tem-
perature. Here the correlation length has been obtained by using 
dependence of correlation function G(r) with r till half of the lat-
tice size ( L

2 ) and Eq. (11)

ξ2 =
∑

r2G(r)∑
G(r)

(11)

At low temperatures the corresponding correlation lengths appear 
to saturate thus confirming that for all these lattice sizes L >> ξ . 
For the maximum lattice size 2048 × 2048 the saturation temper-
ature seems to be around 0.53. The low temperature region lying 
below 0.53 can be conjectured to lie on a line of critical points.

3.6. Binder’s Cumulant check

For continuous phase transition the Binder’s Cumulant

U4 = 1 − < m4 >

2 2
(12)
3 < m >
Fig. 6. Variation of correlation length with temperature for different lattice sizes 
(the vertical line denotes T = 0.525).

Fig. 7. Variation of Binder Cumulant with temperature for different lattice sizes.

is known to be a universal quantity independent of L at the critical 
point [24] (see Fig. 7). For the XY model it was seen by Farinas-
Sanchez et al. [23] that the Binder Cumulants for different lattice 
sizes cross over at a single point which is close to the reported BKT 
temperature. The behavior of U4 obtained by us for the different 
lattice sizes is however completely different. The Binder Cumulants 
decrease with L but does not cross over at any single point close 
to our predicted BKT temperature.

4. Conclusions

From the results obtained by us though we have not been able 
to reach definitive conclusions we are certainly in a position to 
highlight some interesting features. The Binder Cumulants calcu-
lated for different lattice sizes do not show any cross over thus 
indicating the absence of a phase transition. However, from data 
collapse of susceptibility and order parameter we could predict a 
transition at a temperature, TC = 0.526 and the value of critical 
exponents γ , β , ν obtained agrees well with the different hyper-
scaling relations. The correlation function changes from a power 
law behavior below T = 0.525 to an exponential decay for tem-
peratures above T = 0.53 thus confirming the presence of QLRO 
at around TC which has been predicted by us from data collapse 
studies.

Values of η obtained from a power law fit of correlation func-
tion and the ratio γ

ν values obtained from susceptibility data sat-
isfy the hyperscaling relation γ = 2 − η for a small temperature 
ν
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range between T = 0.50 and T = 0.525. This region corresponding 
to T < 0.525 can be considered to lie on a probable line of critical 
points. The evidence of this comes from the nature of the cor-
relation function G(r) as well as from the hyperscaling relations. 
Paredes et al. in their work in 2008 [13] had concluded against 
the existence of QLRO in 2D systems but our work within errors 
and with large system sizes used points closer to the existence of 
a BKT transition at T = 0.525.

The values of η obtained using the hyperscaling relations and 
the results obtained from the data collapse curves of susceptibil-
ity and order parameter do not agree well with those obtained 
from the power law fit of G(r). With our present resources we 
have not been able to generate quantitatively more accurate re-
sults as the computation presented in this communication has 
consumed enormous CPU time. We believe that the quantitative 
predictions of our work could perhaps be improved by reducing 
the statistical errors present in the work. By taking MC averages 
over more configurations (∼107 sweeps) or by doing multiple his-
togram reweighting the errors could be significantly reduced. The 
merit of the model certainly deserves such work to be performed 
before a final conclusion may be thought to have been reached. 
It also needs to be seen if the Binder Cumulants in a better MC 
work points towards a BKT transition. As discussed by Tomita [15]
the fixed scale factor finite size scaling (FSF-FSS) analysis is quite 
useful in distinguishing the genuine critical behavior present in the 
2D XY model from the pseudocritical behavior exhibited by the 2D 
Heisenberg model. In the case of the R P 2 model the FSF-FSS anal-
ysis seems to show that the model is pseudocritical while some 
studies [10,11] mention that this model possesses a genuine crit-
ical region. This discrepancy arises from a subtle and persistent 
crossover in the model. In case of a LL model the existence of a 
line of critical points can be further corroborated using this FSF-
FSS analysis.
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