

ANTI BIOFILM ACTIVITY OF TRITERPENOIDS: AN OVERVIEW

Sudipta Paul Bhattacharya

Department of Microbiology, Lady Brabourne College,

P1/2 Suhrawardy Avenue, Kolkata 700017, India

Corresponding author E-mail: diptaangik@gmail.com

Abstract:

Phytochemicals, bioactive chemicals of plant origin, have long been used as herbal medicines in many countries but have become increasingly receptive in modern day biology for their non toxicity and easy availability. Among all the available groups, (like polyphenols, flavonoids, alkaloids) pentacyclictriterpenoids have received much attention for their wide range of therapeutic properties including anti-inflammatory, anti-cancer, anti-oxidant, anti-viral effects. They are further classified into three groups namely oleanane, ursane and lupane and Glycyrrhetinicacid (GA), ursolic acid (UA), and betulinic acid(BA) are three representative examples from each group respectively. All three compounds have been widely studied for establishing their anti-inflammatory, anti-cancer, anti-tumor and anti-microbial roles among many others. GA, UA and BA have also been studied for their anti-biofilm action. Anti-biofilm activity of various degrees have been established for all the triterpenoids against bacteria, particularly Streptococcus mutans, Staphylococcus aureus and other Gram positive pathogens and more recently against *Pseudomoans aeruginosa*. Though the precise mechanism of intervention remains elusive. Quorum sensing (QS) mediated alteration of gene expression has been associated with biofilm formation. In a systemic exploration for profiling action of petnacyclictriterpenoids against biofilms formed by Gram negative bacteria, GRA, UA and BA have been implicated in biofilm formation inhibition through impairing QS in Vibrio choleare, Pseudomoans aeruginsoa and Acinetobacter baumannii by interacting with various effectors of acylatedhomoserine lactone (AHL) based and autoinducer (AI) based QS-cascades. Within the scope of this review a brief retrospective of pentacyclictriterpenoid as candidate anti-biofilm agent is provided. Alongside, possible therapeutic applicability as a novel scaffold for drug development or in combination with antibiotics is also discussed.

Key words: Phytochemicals, Triterpenids, Quorum sensing, Biofilm, Pathogen

Introduction:

Phytochemicals, plant derived bioactive natural products, have been explored extensively for their therapeutic abilities since ages. Most prominent examples of such application includes curcumin from turmeric having anti tumor (Chang et al., 2020), anti microbial (Figueira et al., 2020), anti inflammatory (Hasanzadeh et al., 2020) properties; gingerenone-A and shogaolfrom ginger with, grastroprotective (Haniadka et al., 2013) and anti obesity (Wang et al., 2017) effects and catechols from tea with antioxidant and anti tumor potential (Tejero et al., 2007) to mention a few. Identification of structure function relationship of phytochemicals with biological macromolecules in combination with synthetic approach lead to tremendous augmentation of phytomedicine research. The biggest advantages of therapeutic application of phytomedicines are its non toxic nature and apparent easy availability. With the receding life span of antibiotics due to the emergenceof resistance and the urge to find new anti-microbial agents have made the phytochemicals even more relevant for developing new-age antimicrobial interventions (Cowen et al., 1999). Pentacyclictriterpenes, widespread in fruit peels, leaves, flower and stem bark have been identified as promising compounds with an array of pharmacological activities. This immensely potential group of molecules are broadly classified into three classes: the lupane-, oleanane-, and ursane, all harboring various pharmacological effects.. Therefore, these triterpenes have been marked as promising lead compounds for the development of new multi-targeting bioactive agents (Jäger et al., 2016). One of the major discoveries over the last few decades in the area of microbiology has been the realization that microbial growth and development takes place on a surface with the formation of a complex community like structure called Biofilm. Formation of biofilm structure allows the microorganism to withstand unfavorable environmental challenges, starvation, host immune system and other intervening agents like antibiotics, making them capable of causing a number of chronic disease conditions (Orazi et al., 2019). Production of various pathogenic determinants as well as biofilm production is dependent on Quoramsensing (QS) (Yang et al., 2020). Therefore disruption of QS has become a very useful alternate strategy to deal with the otherwise resistant pathogens. Any agents that can cause such disruptions are referred as quoramquenchers (QQ). Pentacyclictriterpenes, betulin and betulinic acid are being studied as candidate quorum quencher as these can perturb the QS response for biofilm formation by competitively inhibiting QS receptors in Gram negative pathogens like Pseudomoans aeruginosa (Rajkumari et al., 2018). Antibiofilm action of petacyclictriterpenoids like oleanolic acid (OA), ursolic acid (UA) and maslinic acid (MA) has been expensively studied against Gram positive bacteria like Staphylococcusaureus and Staphylococcus epidermidis (Kurek et al., 2014, Blanco-Cabra et al., 2019)

Considering the immense potential of this group in albeit bacterial biofilms, within the scope of this review a comprehensive purview of research conducted to evaluate potential of pentacyclictriterpenoids as antibiofim agent so far is provided.

Petacyclictriterpenoid a significant bioactive phytochemical:

The number of bioactive phytochemicals synthesized by plants is enormous and most of them belong to phenols or their derivatives, flavonoid compounds, tannins, lignins and related compounds. The main role of these being in plant defence against predatory attack of microbes, insects or others, these also provide odor (terpenoids), color (tannins, quinones) and flavor (terpenoids). Some are used by humans as spices (alkaloid in black pepper, terpenoids, tannins in cinnamon, terpenoid incloves, sulfated terpenoids in garlic, monosaccharide in coriander etc.) (Cowan, 1999) on a regular basis and impart immense health benefits. The gross categorization of phytochemicals with well documented antimicrobial action is summarized in Fig. 1.

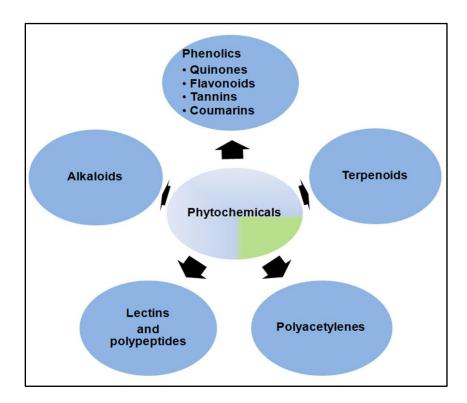


Figure 1: Major groups of phytochemicals with medicinal importance

Triterpenesare widely distributed in natureand are obtained either in free state, as esters or as glycosides. Triterpenoids are usually classified into three groups: acyclic, tetracyclic and pentacyclic (Alqahtani *et al.*, 2013). Pentacyclictriterpenoides are widely distributed in fruits (olive, sour cherry) fruit peels (tomato, apple, pear), leaves (rosemary, oregano, lavender), flower (clove, marigold) and bark (birch) (Sebastian Jäger et al, 2009). Pentacyclictriterpenoids are divided into three main classes, namely, oleanane, ursane and lupine, each of these classes comprising of bioactivecomponents (Jäger *et al.*, 2009). Each of these groups has received much attention due to their various biological pharmacological effects (Fig. 2, Table-1).

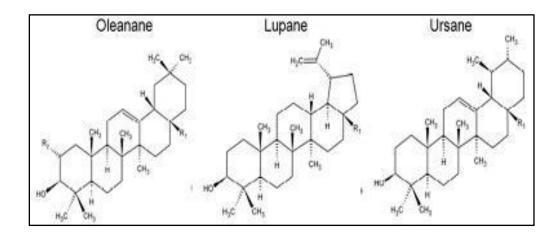


Figure 2: Structural depiction of three major classes of pentacyclictriterpenoids.

(Details of R1 and R2 are provided in Table 1)

Table 1: Classification and examples of pentacyclictriterpenoids (Jager et al., 2009)

Triterpene family	Example	\mathbf{R}_{1}	R_2
oleanane	□-amyrin	CH ₃	Н
	oleanolic acid	СООН	Н
lupane	lupeol	CH ₃	
	betulinic acid	СООН	
ursane	□-amyrin	CH ₃	
	ursolic acid	СООН	

Glycyrrhetinic acid (GA) is a triterpenoid belonging to oleanane family. It is obtained largely from licorice, a leguminosaefound in the Mediterranean region, south Russia, centralAsia, northern China and America. Licorice has long been apart of thetraditional medicine

with its antibacterial, anti-viral, anti-inflammatory and calming effects (Oyama et al., 2016). Extract of licorice contains significant amount of GA and have been studied extensively as well. GA and its various derivative have been assigned with many properties, including antiinflammatory as well as antitumor (Markov et al., 2018), anti-allergic (Yang et al., 2015), antifilarial (Tyagi et al., 2019) anti-viral (Perelmuter et al., 1988) and anti bacterial (Yamashita et al., 2019, Oyama et al., 2016) activities. GA and its derivatives have also found to work as a proapoptotic agent (Logashenko et al., 2011) proteasome activator, agent decelerating aging and Alzheimer's disease progression (Papaevgeniou et al., 2016). Glycyrrhetinic acid in combination with other bioactive compounds acts against Dopamin receptor D3 for Parkinson's diseaseis (Mirza et al., 2014). It has also been effective, alone or in association with other antibiotics against Mycobacterium bovis (Zhou et al., 2012) and methicillin-resistant Staphylococcus aureus (de Breij et al., 2016). Anti fungal (Kim et al., 2013) and anti leismanial (Gupta et al., 2015) activity has also been reported in past years. Ursolic acid (UA) is a pentacyclictriterpenoid belonging to the ursanefamily. UA is a secondary plant metabolite exhibiting a wide range of pharmaceutical properties. Ursolic acid, usually present in the stem bark (eucalyptus, black elder) leaves (oregano, rosemary, sage etc) or fruit peel (apple) (Woźniak et al., 2015). Amongst various pharmacological properties of UA it's pulmonary, hepato, kidney and cerebro as well as osteoporosis (Woźniak et al., 2015) are worth mentioning. Besides, ursolicacid also exhibits antioxidant and anti-inflammatory mechanisms (Habtemariam et al., 2019, Kashyap et al., 2016), anti cancer (Yin et al., 2018, Chan et al., 2019) anti viral (Tohmé et al., 2019) anti-microbial activities against different strains of bacteria (Park et al., 2018, Zhou et al., 2017). This triterpenoid has also been exploited to manage neurodegenerative and psychiatric diseases (Ramos-Hryb et al., 2017), obesity-induced cardiovascular diseases (Lin et al., 2016), cardiomyopathy with diabetic condition (Woźniak et al., 2015). A representative molecule from lupine family is betulinicacid (BA), which has been investigated highly in the past decade for an array of beneficial properties. BA and its analogues have been studied for anti-cancer (Lee et al., 2019), anti-inflammatory Ekuadzi E et al., 2018), anti-angiogenic (Shin et al., 2011), immunemodulatory (Takada et al., 2003), antimicrobial (Haque et al., 2014), anti malarial (Innocente et al., 2012), anti-tumor (Zhang X et al., 2016), and anti-HIV (Li et al., 2016) effects among many others. Besides therapeutic potential, BA has been explored againstchemically induced hypothyroidism (Afzal et al., 2014). Although already established as a potent antimicrobial (Carvalho Junior et al., 2019) agent, the anti-biofilm potential of these molecules are explored mostly in past one decade (Kannan et al., 2019, Feuillolay et al., 2016).

Quorum sensing and biofilms:

Biofilm is an assemblage of microbial cells surrounded by a matrix formed by the extracellular polymeric substances (EPS) secreted by those residing cells. A biofilm community can harbour a pure culture, but a community of mixed microbial species is more common in nature. Biofilm formation is a developmental process in which a quorum sensing signal molecule, an auto-inducer, functions to induce the secretion of the EPS and leads to the formation of characteristic three-dimensional biofilm architecture (Flemming *et al.*, 2016). Biofilm formation provide protection from toxic compounds, such as antibiotics, host immune response and predation (Sharma *et al.*, 2016), thus serve as a survival mechanism for the inhabitants. Almost all microorganisms can form biofilm and microorganisms most often (>99%) exist in nature as biofilms. Biofilm formation also protects microorganisms from various environmental challenges such as pH, salinity, and metal toxicity (Koo *et al.*, 2017) and even confers resistance to antibiotics and microbicides (Hall-Stoodley *et al.*, 2009).

Clinical research also revealed the importance of biofilm in infectious diseases. An estimated frequency of infections caused by biofilms, especially in the developed world, lies between 65% and 80% as per reports from Centres for Disease Control and Prevention (CDC) and National Institutes of Health (NIH), respectively (Moser et al., 2018). Biofilm is significant for pathogenic bacteria as it modulates the pathogenic potential of bacteria as evident from cariogenic bacteria in plaque biofilms. Microorganisms in biofilms have been reported to be less susceptible to antimicrobial agents and have reduced sensitivity to inhibitors (Jabra-Rizk et al., 2006). Biofilm formation results in delayed penetration of tobramycin and colistin into Pseudomonas aeruginosa cells (Musken et al., 2018) and Escherichia coli biofilms exhibited decreased susceptibility to antibacterials (Schiebel et al., 2017). Similar reports are available in ESKAPE pathogens (Pletzer et al., 2018), in addition to high persistence rate after drug exposure to biofilms (Michiels et al., 2016). Moreover, the potentially pathogenic bacteria like Staphylococcus aureus, Enterococcus faecalis, Streptococcus, Klebsiella, Pseudomonas, tend to grow on catheters, artificial joints, mechanical heart valves, etc which lead to persistent infections as a result of periodic release from the said focus (Costerton et al., 2003). Biofilm dispersion is also a matter of clinical concern as release of cells from biofilms initiates a new round of infection. In P. aeruginosa, the localized depletion of nutrition in a biofilm has been hypothesized as inducer for release or detachment of cells from the biofilm (Chambers et al., 2017).

QS is dependent on production of specific signalling molecules in population density dependent manner. These small molecules called autoinducers (AIs) are secreted by the cell and

once reaching upon a certain concentration, can bind to certain receptors present on the cell sending a designated signal leading to significant alteration in gene expression often related to the pathogenicity of the bacterium. Different virulence factors are regulated by QS for different bacterium like pyocyanin, lectin and other factors in *P. aeruginosa*, hemolysin and enterotoxin production in *S. aureus*, biofilm formation in *Vibrios* etc.

QS was first identified in Vibrio sp.. For regulating QS cascade the bacteria possesses two independent QS-inducers. The CAI-1 ((S)-3-hydroxytridecan-4-one) system that acts intragenously is unique for Vibrio (Kelly et al., 2009). The Other auto inducer, AI-2 ((2S, 4S)-2methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate), which is conserved across Gram negative bacteria for inter species communication (Chen et al., 2002). Vibrio proteins CqsS and LuxPQ, functions as CAI-1 and AI-2 receptors respectively. At low cell density, and lesser level of autoinducers, CqsS and LuxPQ act as kinases for LuxU. The phosphate is funnelled to LuxO the key response regulator for the bacteria. When phosphorylated, LuxO triggers transcription of an array of four small RNA - Qrr 1-4. Cumulatively these small RNAs repress translation of HapR which is the master QS regulator in high cell density. Parallely, Qrr 1-4 RNAs activates translation of AphA, regulator for low cell density QS regulator. At high cell density, when auto inducer the CqsS and LuxPQ acts as phosphatse with successive dephosphorylation of LuxUand LuxO. Hence under such a situation, grr 1-4 is not expressed. This leads to removal of repression and activation of HapR translation. On the flip side, translation of AphR stalls. Under such situation the aggregative behaviour is induced. Jung et al. recently reported that two other QS receptor CqsR and VpsS, with unknown ligands integrate signal into QS cascade via LuxU (2015). Recently a third biofilm modulatory Qs system was discovered in V. cholerae. Autoinducer, called DPO (3, 5-dimethylpyrazin-2-ol), binds to a transcriptional regulator called VqmA. This complex activates expression of aregulatory RNA VqmRwhicheventualy represses genes required for biofilm formation (Bridges et al., 2019).

The bacterial QS signals mainly consistof acyl-homoserine lactones (AHLs), autoinducing peptides (AIPs), and autoinducer-2 (AI-2). The QS signal differ for Gram positive and Gram negative organisms. Gram positives rely on AIP signaling and Gram negatives on AHL signaling and both on AI-2signals as well. These three types of signaling molecules have been found to regulate growth and infectivity in bacteria. AHLs once accumulated upto the threshold level, diffuse across the cell membrane and bind target transcriptional regulators leading to gene expression(Yang *et al.*, 2009). For AIP, they upon reaching threshold, are transported out and then enter the cell by the help of a histidine kinase sensor which upon

phosphorylation alter expression of target genes. AI-2 system is used by the bacteria to receive signals from other species present in the same environment. For most of the bacteria, AI-2 signaling is carried out by Luxsynthetase. As biofilm formation has been intricately linked with QS for most of the pathogens along with expression of many other virulence factors, blockage of QS signaling is therefore considered as an efficient intervention strategy. Application of QS suppressors or Quoram Quenchers (QQ) to inhibit the expression of virulence factors and thus making them susceptible to host immune system seems like an efficient alternative therapeutic strategy. Inactivation of receptors, inhibition of synthesis of the signal, degradation of the signal and blockage of the signal using antibody are few of the strategies applied.

Pentacyclictriterpenoid as quorum quencher:

Over the years unrestricted use of antibiotics have made the issue of resistance more and more complicated. Hence finding suitable alternative has become an urgent need of the hour. Among many agents tried and tested, tritepenoids have been one of the most readily accepted one due to its non toxic nature. Many researchers have not only established these as potent anti microbial agents, but also anti biofilm agent against various groups of microorganisms.

In a study with oleanolic aldehyde coumarate (OALC), a triterpenoidcoumarateester and novel bioactive compound obtained from dalbergiatrichocarpa bark not only inhibited the formation of biofilm by *P. aeruginosa*, but also affected its maintenance. The compound found to interfere with the expression of the las and rhl mediated QS systems, Consequently QS-mediated virulence factors.AHL production was affected and external supply of AHL was unsuccessful to restore the condition proving the extent of damage even beyond AHL production (Rasamiravaka et al., 2015). In a study by Rajkumari et al.betulin and betulinic acid were found to be strong competitive inhibitors of QS receptors, LasR and RhlR. Another two triterpenes, ursolic acid and resveratrol were tested for their anti biofilm potential against Methicillin Resistant Staphylococcus aureus. Although ursolic acid seemed to inhibit biofilm formation by affecting amino acid metabolism, resveratrol affected QS related gene expression. Hld gene that codes δ hemolysin and located within the agr locus, one of the QS clusters in S.aureus, was found to be up-regulated, indicating that the role of resveratrol and ursolic acid in MRSA agr function at the RNA level for inhibiting biofilm formation. A similar study by Quave CL et al with oleanene and ursene derivatives from European Chestnut leaf extracts showed biofilm inhibition in Staphylococcus aureus by targeting agr alleles (Quave et al., 2015). Five limonoids isolated from sour orange were checked for their ability to interfere with QS and biofilm formation in Vibrio harveyi. Out of the five tested four, namely isolimonic acid, deacetylnomilinic acid glucoside and ichangin were found to inhibit AI mediated QS. Moreover isolimonic acid and ichangin, both were identified as potent modulator of luxO expression (Vikram *et al.*, 2011). In a comprehensive study with three triterpenoids, glycyrrhetinic acid, ursolic acid and betulinic acid against *Vibrio cholerae* biofilm, all three were found to interfere with QS process and perturb biofilm formation (Fig.3). Molecular docking analysis hinted about probable interaction with cyclic di-GMP sensor VpsT, autoinducer-2 sensor kinase LuxP-LuxQ and transcriptional activator HapR (doi: https://doi.org/10.1101/2020.01.06.896183). Over all, comprehensive and better understanding of anti-biofilm potential of various pentacyclictriterpenoids has offered the scope of developing multi-faceted strategies to combat bacterial infections.

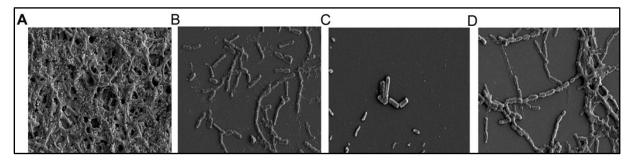


Figure 3: Effect if triterpenoids on biofilm integrity. Log phase *Vibrio cholerae* cells were allowed to form static biofilm in absence (A) or presence of three different pentacyclictriterpemoids representing oleanone(B), lupine (C) and ursane (D) family. Integrity of biofiulmswere visualized by scanning electron microscopy (Data: Paul Bhattacharya *et al.*, Unpublished).

Concluding remark:

A major concern for clinical implication of the pentacyclicterpepenoids is cytotoxic impact on various mammalian cell lines. However, the triterpenoids can offer excellent bioactive scaffold to impart biofilm selectivity and diminishing cytotoxicity. Selective nanodelivery strategy for biofilm can also accentuate anti-biofilm action. Testing in combination with antibiotic for optimal triterpenoid-antibiotic composition can culminate into successful combinatorial therapeutics.

Acknowledgements:

The author acknowledges Dr. Aparna Sen, Depatment of Microbiology, Lady Brabourne College, Kolkata for her guidance in preparing the manuscript.

References:

- Afzal M, Kazmi I, Semwal S, Al-Abbasi FA, Anwar F. Therapeutic exploration of betulinic acid in chemically induced hypothyroidism. *Mol Cell Biochem*. 2014;386(1-2):27-34. doi:10.1007/s11010-013-1842-0
- Alqahtani A, Hamid K, Kam A, et al. The pentacyclictriterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. *Curr Med Chem*. 2013;20(7):908-931.
- Blanco-Cabra N, Vega-Granados K, Moya-Andérico L, et al. Novel Oleanolic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study. *ACS Infect Dis.* 2019;5(9):1581-1589. doi:10.1021/acsinfecdis.9b00125
- Bridges AA, Bassler BL. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. *PLoS Biol*. 2019;17(11):e3000429. Published 2019 Nov 11. doi:10.1371/journal.pbio.3000429
- Carvalho Junior AR, Martins ALB, Cutrim BDS, et al. Betulinic Acid Prevents the Acquisition of Ciprofloxacin-Mediated Mutagenesis in *Staphylococcus aureus*. *Molecules*. 2019;24(9):1757. Published 2019 May 7. doi:10.3390/molecules24091757
- Chambers JR, Cherny KE, Sauer K. Susceptibility of Pseudomonas aeruginosa Dispersed Cells to Antimicrobial Agents Is Dependent on the Dispersion Cue and Class of the Antimicrobial Agent Used. *Antimicrob Agents Chemother*. 2017;61(12):e00846-17. Published 2017 Nov 22. doi:10.1128/AAC.00846-17
- Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. *J Integr Med.* 2019;17(3):155-160. doi:10.1016/j.joim.2019.03.003
- Chang M, Wu M, Li H. Antitumor Effects of Curcumin and Glycyrrhetinic Acid-Modified Curcumin-Loaded Cationic Liposome by Intratumoral Administration. *Evid Based Complement Alternat Med.* 2020;2020:4504936. Published 2020 May 30. doi:10.1155/2020/4504936
- Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections [published correction appears in J Clin Invest. 2007 Jan;117(1):278]. *J Clin Invest*. 2003;112(10):1466-1477. doi:10.1172/JCI20365
- Cowan MM. Plant products as antimicrobial agents. ClinMicrobiol Rev. 1999;12(4):564-582.

- deBreij A, Karnaoukh TG, Schrumpf J, et al. The licoricepentacyclictriterpenoid component 18β-glycyrrhetinic acid enhances the activity of antibiotics against strains of methicillin-resistant Staphylococcus aureus. *Eur J ClinMicrobiol Infect Dis.* 2016;35(4):555-562. doi:10.1007/s10096-015-2570-z
- doi: https://doi.org/10.1101/2020.01.06.896183
- Ekuadzi E, Biney RP, Benneh CK, OseiAmankwaa B, Jato J. Antiinflammatory properties of betulinic acid and xylopic acid in the carrageenan-induced pleurisy model of lung inflammation in mice. *Phytother Res.* 2018;32(3):480-487. doi:10.1002/ptr.5993
- Feuillolay C, Pecastaings S, Le Gac C, et al. A Myrtuscommunis extract enriched in myrtucummulones and ursolic acid reduces resistance of Propionibacterium acnes biofilms to antibiotics used in acne vulgaris. *Phytomedicine*. 2016;23(3):307-315. doi:10.1016/j.phymed.2015.11.016
- Figueira LW, de Oliveira JR, Camargo SEA, de Oliveira LD. Curcuma longa L. (turmeric), Rosmarinusofficinalis L. (rosemary), and Thymus vulgaris L. (thyme) extracts aid murine macrophages (RAW 264.7) to fight Streptococcus mutans during in vitro infection [published online ahead of print, 2020 Jun 13]. *Arch Microbiol*. 2020;10.1007/s00203-020-01945-5. doi:10.1007/s00203-020-01945-5
- Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. *Nat Rev Microbiol*. 2016;14(9):563-575. doi:10.1038/nrmicro.2016.94
- Gupta P, Das PK, Ukil A. Antileishmanial effect of 18β-glycyrrhetinic acid is mediated by Tolllike receptor-dependent canonical and noncanonical p38 activation. *Antimicrob Agents Chemother*. 2015;59(5):2531-2539. doi:10.1128/AAC.03997-14
- Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. *Oxid Med Cell Longev*. 2019;2019:8512048. Published 2019 May 16. doi:10.1155/2019/8512048
- Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. *Cell Microbiol*. 2009;11(7):1034-1043. doi:10.1111/j.1462-5822.2009.01323.x
- Haniadka R, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS. A review of the gastroprotective effects of ginger (Zingiberofficinale Roscoe). *Food Funct*. 2013;4(6):845-855. doi:10.1039/c3fo30337c

- Haque S, Nawrot DA, Alakurtti S, Ghemtio L, Yli-Kauhaluoma J, Tammela P. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. *PLoS One*. 2014;9(7):e102696. Published 2014 Jul 17. doi:10.1371/journal.pone.0102696
- Hasanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A. Curcumin: an inflammasome silencer [published online ahead of print, 2020 May 25]. *Pharmacol Res.* 2020;159:104921. doi:10.1016/j.phrs.2020.104921
- Innocente AM, Silva GN, Cruz LN, et al. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. *Molecules*. 2012;17(10):12003-12014. Published 2012 Oct 12. doi:10.3390/molecules171012003
- Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. *Antimicrob Agents Chemother*. 2006;50(4):1463-1469. doi:10.1128/AAC.50.4.1463-1469.2006
- Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclictriterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts. *Molecules*. 2009;14(6):2016-2031. Published 2009 Jun 4. doi:10.3390/molecules14062016
- Jung SA, Hawver LA, Ng WL. Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr Genet. 2016;62(2):255-260. doi:10.1007/s00294-015-0532-8
- Kannan S, Sathasivam G, Marudhamuthu M. Decrease of growth, biofilm and secreted virulence in opportunistic nosocomial Pseudomonas aeruginosa ATCC 25619 by glycyrrhetinic acid. *MicrobPathog*. 2019;126:332-342. doi:10.1016/j.micpath.2018.11.026
- Kashyap D, Sharma A, Tuli HS, Punia S, Sharma AK.Ursolic Acid and Oleanolic Acid: PentacyclicTerpenoids with Promising Anti-Inflammatory Activities. *Recent Pat Inflamm Allergy Drug Discov*. 2016;10(1):21-33. doi:10.2174/1872213x10666160711143904
- Kelly RC, Bolitho ME, Higgins DA, et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. *Nat Chem Biol.* 2009;5(12):891-895. doi:10.1038/nchembio.237
- Kim J, Joo I, Kim H, Han Y. 18β-glycyrrhetinic acid induces immunological adjuvant activity of Th1 against Candida albicans surface mannan extract. *Phytomedicine*. 2013;20(11):951-955. doi:10.1016/j.phymed.2013.04.008
- Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. *Nat Rev Microbiol*. 2017;15(12):740-755. doi:10.1038/nrmicro.2017.99

- Kurek A, Markowska K, Grudniak AM, Janiszowska W, Wolska KI. The effect of oleanolic and ursolic acids on the hemolytic properties and biofilm formation of Listeria monocytogenes. *Pol J Microbiol*. 2014;63(1):21-25.
- Lee D, Lee SR, Kang KS, et al. Betulinic Acid Suppresses Ovarian Cancer Cell Proliferation through Induction of Apoptosis. *Biomolecules*. 2019;9(7):257. Published 2019 Jul 3. doi:10.3390/biom9070257
- Li J, Goto M, Yang X, et al. Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity. *Bioorg Med ChemLett*. 2016;26(1):68-71. doi:10.1016/j.bmcl.2015.11.029
- Lin YT, Yu YM, Chang WC, Chiang SY, Chan HC, Lee MF. Ursolic acid plays a protective role in obesity-induced cardiovascular diseases. *Can J PhysiolPharmacol*. 2016;94(6):627-633. doi:10.1139/cjpp-2015-0407
- Logashenko EB, Salomatina OV, Markov AV, et al. Synthesis and pro-apoptotic activity of novel glycyrrhetinic acid derivatives. *Chembiochem*. 2011;12(5):784-794. doi:10.1002/cbic.201000618
- Markov AV, Sen'kova AV, Zenkova MA, Logashenko EB. *MolBiol (Mosk)*. 2018;52(2):306-313. doi:10.7868/S0026898418020143
- Michiels JE, Van den Bergh B, Verstraeten N, Fauvart M, Michiels J. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens. *Antimicrob Agents Chemother*. 2016;60(8):4630-4637. Published 2016 Jul 22. doi:10.1128/AAC.00757-16
- Mirza MU, Mirza AH, Ghori NU, Ferdous S. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson's disease: a pharmacoinformatics study. *Drug Des DevelTher*. 2014;9:187-198. Published 2014 Dec 18. doi:10.2147/DDDT.S72794
- Moser C, Thomsen TR, Høiby N. Next generation microbiology and cystic fibrosis diagnostics: are we there yet?. *CurrOpinPulm Med.* 2018;24(6):599-605. doi:10.1097/MCP.0000000000000016
- Müsken M, Pawar V, Schwebs T, et al. Breaking the Vicious Cycle of Antibiotic Killing and Regrowth of Biofilm-Residing *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother*. 2018;62(12):e01635-18. Published 2018 Nov 26. doi:10.1128/AAC.01635-18
- Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. *J Bacteriol*. 2019;202(1):e00530-19. Published 2019 Dec 6. doi:10.1128/JB.00530-19

- Oyama K, Kawada-Matsuo M, Oogai Y, Hayashi T, Nakamura N, Komatsuzawa H. Antibacterial Effects of Glycyrrhetinic Acid and Its Derivatives on Staphylococcus aureus. *PLoS One*. 2016;11(11):e0165831. Published 2016 Nov 7. doi:10.1371/journal.pone.0165831
- Papaevgeniou N, Sakellari M, Jha S, et al. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in Caenorhabditiselegans and Neuronal Cultures. *Antioxid Redox Signal*. 2016;25(16):855-869. doi:10.1089/ars.2015.6494
- Park SN, Lim YK, Choi MH, et al. Antimicrobial Mechanism of Oleanolic and Ursolic Acids on Streptococcus mutans UA159. *CurrMicrobiol*. 2018;75(1):11-19. doi:10.1007/s00284-017-1344-5
- Perelmuter S, Liger F. Couronneset bridges de céramique sans support métallique: incidence sur les preparations [Ceramic crowns and bridges without metallic support: effect on preparation]. *Inf Dent.* 1988;70(33):3063-3070.
- Pletzer D, Mansour SC, Hancock REW.Synergy between conventional antibiotics and antibiofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. *PLoSPathog*. 2018;14(6):e1007084. Published 2018 Jun 21. doi:10.1371/journal.ppat.1007084
- Quave CL, Lyles JT, Kavanaugh JS, et al. Castaneasativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance [published correction appears in PLoS One. 2016;11(9):e0163655]. *PLoS One*. 2015;10(8):e0136486. Published 2015 Aug 21. doi:10.1371/journal.pone.0136486
- Rajkumari J, Borkotoky S, Murali A, Suchiang K, Mohanty SK, Busi S. Attenuation of quorum sensing controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by pentacyclictriterpenes, betulin and betulinic acid. *MicrobPathog*. 2018;118:48-60. doi:10.1016/j.micpath.2018.03.012
- Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases. *CNS Drugs*. 2017;31(12):1029-1041. doi:10.1007/s40263-017-0474-4
- Rasamiravaka T, Vandeputte OM, Pottier L, et al. Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a TriterpenoidCoumarate Ester Isolated from

- Dalbergiatrichocarpa, a Tropical Legume. *PLoS One*. 2015;10(7):e0132791. Published 2015 Jul 17. doi:10.1371/journal.pone.0132791
- Schiebel J, Böhm A, Nitschke J, et al. Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes. *Appl Environ Microbiol*. 2017;83(24):e01660-17. Published 2017 Dec 1. doi:10.1128/AEM.01660-17
- Sharma S, Pal R, Hameed S, Fatima Z. Antimycobacterial mechanism of vanillin involves disruption of cell-surface integrity, virulence attributes, and iron homeostasis. *Int J Mycobacteriol*. 2016;5(4):460-468. doi:10.1016/j.ijmyco.2016.06.010
- Shin J, Lee HJ, Jung DB, et al. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. *PLoS One*. 2011;6(6):e21492. doi:10.1371/journal.pone.0021492
- Takada Y, Aggarwal BB. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. *J Immunol*. 2003;171(6):3278-3286. doi:10.4049/jimmunol.171.6.3278
- Tejero I, Gonzalez-García N, Gonzalez-Lafont A, Lluch JM.Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study. *J Am Chem Soc.* 2007;129(18):5846-5854. doi:10.1021/ja063766t
- Tohmé MJ, Giménez MC, Peralta A, Colombo MI, Delgui LR. Ursolic acid: A novel antiviral compound inhibiting rotavirus infection in vitro. *Int J Antimicrob Agents*. 2019;54(5):601-609. doi:10.1016/j.ijantimicag.2019.07.015
- Tyagi R, Verma S, Mishra S, et al. In Vitro and In Silico Studies of Glycyrrhetinic Acid Derivatives as Anti- Filarial Agents. *Curr Top Med Chem.* 2019;19(14):1191-1200. doi:10.2174/1568026619666190618141450
- Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai SD, Patil BS. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. *Microbiology*. 2011;157(Pt 1):99-110. doi:10.1099/mic.0.041228-0
- Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiberofficinale Roscoe on obesity and metabolic syndrome: a review. *Ann N Y Acad Sci.* 2017;1398(1):83-98. doi:10.1111/nyas.13375

- Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A PentacyclicTriterpenoid with a Wide Spectrum of Pharmacological Activities. *Molecules*. 2015;20(11):20614-20641. Published 2015 Nov 19. doi:10.3390/molecules201119721
- Yamashita T, Kawada-Matsuo M, Katsumata T, et al. Antibacterial activity of disodium succinoylglycyrrhetinate, a derivative of glycyrrhetinic acid against Streptococcus mutans. *MicrobiolImmunol*. 2019;63(7):251-260. doi:10.1111/1348-0421.12717
- Yang J, Xi K, Gui Y, et al. Lin Chung Er Bi Yan HouTou Jing WaiKeZaZhi. 2015;29(23):2060-2064.
- Yang M, Meng F, Gu W, et al. Effects of Natural Products on Bacterial Communication and Network-Quorum Sensing. *Biomed Res Int.* 2020;2020:8638103. Published 2020 May 24. doi:10.1155/2020/8638103
- Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J. Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. *Can J Microbiol*. 2009;55(2):210-214. doi:10.1139/w08-128
- Yin R, Li T, Tian JX, Xi P, Liu RH.Ursolic acid, a potential anticancer compound for breast cancer therapy. *Crit Rev Food Sci Nutr.* 2018; 58(4):568-574. doi:10.1080/10408398.2016.1203755
- Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). *Mol Med Rep.* 2016;14(5):4489-4495. doi:10.3892/mmr.2016.5792
- Zhou T, Li Z, Kang OH, et al. Antimicrobial activity and synergism of ursolic acid 3-O-α-L-arabinopyranoside with oxacillin against methicillin-resistant Staphylococcus aureus. *Int J Mol Med.* 2017;40(4):1285-1293. doi:10.3892/ijmm.2017.3099
- Zhou X, Zhao L, Liu X, et al. Antimycobacterial and synergistic effects of 18β-glycyrrhetinic acid or glycyrrhetinic acid-30-piperazine in combination with isoniazid, rifampicin or streptomycin against Mycobacterium bovis. *Phytother Res.* 2012;26(2):253-258. doi:10.1002/ptr.3536