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In manufacturing industries, it is often seen that the bilateral speci-
fication limits corresponding to a particular quality characteristic are
not symmetric with respect to the stipulated target. A unified super-
structure C

′′

p(u, v) of univariate process capability indices was specially
designed for processes with asymmetric specification limits. However,
as in most of the practical situations a process consists of a num-
ber of inter-related quality characteristics, subsequently, a multivariate
analogue of C

′′

p(u, v), which is called CM(u, v), was developed. In the
present paper, we study some properties of CM(u, v) like threshold
value and compatibility with the asymmetry in loss function. We also
discuss estimation procedures for plug-in estimators of some of the
member indices of CM(u, v). Finally, the superstructure is applied to a
numerical example to supplement the theory developed in this article.
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1 Introduction

Development of quality management practices has gradually strengthened the idea
that anything produced must have come through a process where some input is con-
verted into some useful output for which there are customers. In measuring whether
such a process is capable to meet the specifications (often fixed by the customer or the
designer) or not, a very popularly known measure, called process capability index (PCI),
is used. Kane (1986), in his pioneering paper on PCIs, has established the importance
of studying various univariate PCIs. Under the assumption of normality of the dis-
tribution of the quality characteristic under consideration, the four classical PCIs for
symmetric specification limits are Cp = USL−LSL

6𝜎
, Cpk = d−|𝜇−M|

3𝜎
, Cpm = d

3
√
𝜎2+(𝜇−T)2

,
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and Cpmk = d−|𝜇−M|
3
√
𝜎2+(𝜇−T)2

, where USL and LSL are the upper and lower specification

limits of the concerned quality characteristic, respectively, d = USL−LSL
2

, M = USL+LSL
2

,
and T is the target.

Pearn, Kotz and Johnson (1992), among others, studied the distributional proper-
ties of the existing univariate PCIs. Vännman (1995) proposed generalized univariate
PCIs by developing a superstructure of univariate PCIs called Cp(u, v), which is given
by

Cp(u, v) =
d − u|𝜇 − M|

3
√
𝜎2 + v(𝜇 − T)2

, u, v ≥ 0. (1)

However, most of the indices available in literature make an inherent assumption that
the quality characteristic under consideration is symmetric about the target – which
may not always be the case. The specification of a process is called asymmetric when
the target value differs from the mid-point of the specification limits.

In practice, customers are often willing to allow more deviation from target towards
one side of the specification interval than the other. Even if a process starts with a
symmetric specification interval, frequently, it is observed that the manufacturer and
the customer have to opt for an asymmetric specification interval in order to avoid
unnecessary increase in the production cost. Even if data on a process parameter, whose
underlying distribution is non-normal, are converted into a normal one using standard
transformations, then the initial symmetric specification limits become automatically
converted into asymmetric ones by virtue of the same transformation (Boyles, 1994).

Although the presence of asymmetry in specification limits is not at all a rare
event especially in manufacturing industries, the research work in this field is surpris-
ingly fewer as compared with the case of symmetric specification limits. Kane (1986),
Kushler and Hurley (1992), and Franklin and Wasserman (1992) addressed this
problem by shifting either or both of the original specification limits so as to make
them symmetric. However, these new limits are different from the original ones and
hence often yield misleading outcomes.

Boyles (1994) observed that most of the existing indices attain their maximum val-
ues at some point between T and M, whereas for an ideal process, the indices should
be optimum at the target. To overcome the deficiencies of the indices studied earlier, he
proposed a new index as Spk = S(USL−𝜇

𝜎
, 𝜇−LSL

𝜎
), where S(x, y) is a smooth function,

which is defined as S(x, y) = 1
3
Φ−1

(
Φ(x)+Φ(y)

2

)
.

Vännman (1997) proposed two superstructures of PCIs, namely, Cpv(u, v) and
Cpa(u, v), for asymmetric specification limits. While Cpv(u, v) fails to capture the asym-
metry of the loss function, Cpa(u, v) is not optimum on target.

Pearn (1998) proposed a new PCI analogous to Cpk for asymmetric tolerances,
which is given by C

′′

pk
= d∗−F∗

3𝜎
, where DU = USL−T , DL = T−LSL, d∗ = min(DL,DU ),

and F∗ = max{ d∗(𝜇−T)
DU

, d∗(T−𝜇)
DL

}. Pearn et al. (2001) studied some properties of C∗
pk

and
proposed an estimator that is consistent and asymptotically unbiased and converges to
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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a mixture of two normal distributions. Later Chen and Pearn (2001) generalized this
index to a superstructure, which is defined as

C
′′

p (u, v) =
d∗ − uF∗

3
√
𝜎2 + vF2

, u ≥ 0, v ≥ 0, (2)

where F = max{ d(𝜇−T)
DU

, d(T−𝜇)
DL

}. They compared the new index with the existing ones
with respect to process yield and process center and observed the following:

1. C
′′

p (u, v) attains maximum value when the process is on target.
2. High values of C

′′

p (u, v) indicate high process yield, whereas small values indicate
more room for improvement.

However, Taam et al. (1993), among others, have pointed out that in many practical sit-
uations, a manufactured product has more than one quality characteristics to describe
its features, geometric shape, and design intent. The prevailing practice of most of the
industries is to calculate suitable univariate PCI for each of the quality characteristics
and then suitably summarize them to have a single valued capability measure of the
process. This ignores the interdependence; that is, the correlation among various qual-
ity characteristics and as such may, often, be misleading. This necessitates the use of
the so-called multivariate PCIs (MPCIs). The situation becomes a little more difficult
for asymmetric specification regions.

Giri (2004) has developed a set of MPCIs for asymmetric region analogous to C
′′

p ,
C

′′

pk
, C

′′

pm, and C
′′

pmk
from a geometrical perspective. Suppose there are p quality char-

acteristics, which are correlated among themselves and are having the mean vector 𝝁
and dispersion matrix Σ. Then, Giri (2004) defined the following MPCIs:

C
′′

p = 3√
𝜒2

p,0.9973

× inf
i
(C′′

p,i),

C
′′

pk =
(

1 − sup
i

(
sup

(
𝜇i − Ti

Ui − Ti
,

Ti − 𝜇i

Ti − Li

)))
× C

′′

p ,

C
′′

pm =
{

1 + Q(𝝁)′Σ−1Q(𝝁)
}− 1

2p × C
′′

p ,

C
′′

pmk =
{

1 + (𝝁 − T)′Σ−1(𝝁 − T)
}− 1

2p × C
′′

pk,

where C
′′

p,i is the C
′′

p value corresponding to the ith variable, for i = 1(1)p; and Q(𝝁),
the multivariate analogue of F, is a p component vector whose ith element is defined as

Q(𝝁)i = (𝜇i − Ti) ×
(

d
Ui − Ti

1[𝜇i>Ti] +
d

Ti − Li
1[𝜇i<Ti]

)
, i = 1(1)p,

with 1[𝜇∈A] =
{

1, if 𝜇 ∈ A
0, otherwise

.

Under the assumption of multivariate normality of the underlying distribution
of the quality characteristics, Chatterjee and Chakraborty (2011) have defined a
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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superstructure of MPCIs for asymmetric specifications, analogous to C
′′

p (u, v) (refer to
Equation 2), as

CM(u, v) = 1
3

√
(𝐝∗ − u𝐆∗)′Σ−1(𝐝∗ − u𝐆∗)

1 + v𝐆′Σ−1𝐆
, u ≥ 0, v ≥ 0, (3)

where d∗ = (min(D1L,D1U ),min(D2L,D2U ),… ,min(DpL,DpU ))′, that is, d∗
i =

min(DiL,DiU ), for i = 1(1)p with DU = (D1U ,D2U ,… ,DpU )′ and D𝐋 =
(D1L,D2L,… ,DpL)′. Also d = (USL1−LSL1

2
,

USL2−LSL2

2
,… ,

USLp−LSLp

2
)′, that is, di =

USLi−LSLi

2
, for i = 1(1)p.

G = (a1d1, a2d2,… , apdp)′, where ai = [max{𝜇i−Ti

DiU
,

Ti−𝜇i

DiL
}],∀i = 1(1)p. Thus, 𝐆 =

[diag(a1, a2,… , ap)] × d = A𝐝, say and its univariate counterpart is given as F in
formula 2.

Similarly, F∗ can be generalized as 𝐆∗ = A𝐝∗ for the multivariate case. Note that for
p = 1, CM(u, v) boils down to C

′′

p (u, v). Here boldfaced letters have been used to denote
vectors.

Similar to Cp of the symmetric univariate case, CM(0, 0) also does not incorporate
the process mean vector 𝝁 in its definition, and hence it measures the true capability
of a process only when it is centered on its target and fails to detect any deviation of
process centering from target. Therefore, CM(0, 0) should be treated as the potential
capability index rather than an actual index.

In the present article, we have made a comprehensive study of CM(u, v). In section
2, some very crucial properties of CM(u, v) are explored namely, its ability to detect
asymmetry in loss function and threshold value computation. Plug-in estimators of the
member indices of CM(u, v) for u = 0, 1 and v = 0, 1 along with their expectations are
discussed in section 3 followed by the expressions for the corresponding expectations
under a large sample scenario in section 4. Section 5 contains a numerical example
showing the efficiency of CM(u, v) in dealing with asymmetric specification region in
multivariate scenario. Finally, the article concludes in section 6 with a brief summary
of the properties of CM(u, v) studied here.

2 Some properties of CM(u, v)

2.1 CM(u, v) and asymmetry of loss function

Often asymmetry in specification limits arise owing to differences in the importance of
deviation from either side of the target. Such asymmetry in specification limits makes
the corresponding loss function asymmetric as well. This very phenomenon should be
reflected in an ideal PCI, as deviation from target towards one specification limit is
likely to incur more loss than deviation towards the other specification limit. Hence our
next objective is to check the effectiveness of CM(u, v) in this respect. For this, we have
adopted the approach, which was originally used by Chen and Pearn (2001), based
on the concept of ‘equal departure ratio’ from the target.
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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Let us consider two processes ‘P’ and ‘Q’ with the same 𝐔𝐒𝐋, 𝐋𝐒𝐋, T, and Σ, but
two different process means 𝝁P and 𝝁Q, respectively, such that 𝝁P > T and 𝝁Q < T,

satisfying (i) 𝝁P − T ≠ T − 𝝁Q and (ii)
𝜇Pi

−Ti

DUi

=
Ti−𝜇Qi

DLi

= gi, say, i = 1(1)p; that is,

each quality characteristic of the two processes P and Q has equal departure ratio from
target, although 𝝁P and 𝝁Q themselves are not equidistant from either side of T. In
fact, the condition 𝝁P − T ≠ T − 𝝁Q nullifies the possibility of symmetry of the loss
functions of the two processes. Moreover, DUi

and DLi
, i = 1(1)p (which are necessarily

unequal owing to the asymmetry in specification limits) have been used as units to
measure the deviation of mean of a particular quality characteristic from its target to
incorporate the concept of asymmetry in specification region.

For processes P and Q, let us define aPi
=

𝜇Pi
−Ti

DUi

and aQi
=

Ti−𝜇Qi

DLi

, i = 1(1)p, respec-

tively, such that AP and AQ are two p-component diagonal matrices whose ith diagonal
elements are given by aPi

and aQi
, respectively, for i = 1(1)p. Then AP and AQ are the

A matrices corresponding to the processes P and Q, respectively. As we have already
assumed

𝜇Pi
−Ti

DUi

=
Ti−𝜇Qi

DLi

, the A matrices of both the processes P and Q become identical,

that is, AP = AQ.
Now, from Equation 3,

CM(u, v) = 1
3

√
𝐝∗′(Ip − uA)Σ−1(Ip − uA)𝐝∗

1 + v𝐝′AΣ−1A𝐝
. (4)

As 𝐝∗ is not a function of the deviation of 𝝁 from T, from formula 4, CM(u, v) can be
expressed as a function of the A matrix only, which we have already found to be equal
for both the processes. Hence the value of CM(u, v) will remain the same for both the
processes.

Thus, for two processes P and Q having identical values of 𝐔𝐒𝐋, 𝐋𝐒𝐋, T, and Σ, but
𝝁P −T ≠ T −𝝁Q, if their departure ratios are equal, then these two processes will have
the same CM(u, v) value. As the actual losses incurred by these two processes, namely,
𝝁P −T and T −𝝁Q, are not equal, but still their CM(u, v) values are identical, therefore,
following similar logic given by Chen and Pearn (2001) (in the context of C

′′

p (u, v)),
here also, we conclude that CM(u, v) takes the asymmetry of loss function into account.

2.2 Threshold value of CM(0, 0)

Threshold value is an integral part of a PCI. If the PCI for a process is less than this
value, the process is considered to be incapable of producing what it is supposed to
produce. The higher the value of the PCI, the better is the process. Theoretically,
the threshold value of a PCI in the univariate case is that value for which the dif-
ference between the specification limits is equal to the process spread. For univariate
processes centered at the target and having symmetric specification limits with respect
to the target, the threshold value of the PCI is always one. However, this is not the
case with univariate processes having asymmetric specification limits (Chatterjee and
Chakraborty, 2014). Moreover, as CM(u, v), being a multivariate index, incorporates
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.



MPCIs for asymmetric specification 291

the correlation structure among the quality characteristics into account, its threshold
value should, ideally, be a function of such correlation structure.

Note that if a process is not even potentially capable, then it is advisable to look into
the process and take appropriate corrective measures before production starts. Hence,
generally, threshold values are computed for the PCIs like Cp and C

′′

p , which measure
the potential process capability. We shall now compute the threshold value of CM(0, 0)
for the bivariate case. For multivariate case, it is difficult to obtain a closed form of the
expression for the threshold value of CM(0, 0).

The position of 𝜇 with respect to the corresponding lower and upper specification
limits play a major role in the context of threshold value computation for univariate
processes with symmetric specification limits. The situation becomes more complex
in the case of processes having asymmetric specification limits (both univariate and
multivariate), as then one needs, in addition, to take care of the position of the target
with respect to the corresponding specification limits (Chatterjee and Chakraborty
(2014) for the univariate case). Hence, while deriving the expression for the threshold
value of CM(0, 0), we shall consider three different cases, depending upon the various
possible positions of T with respect to 𝐔𝐒𝐋 and 𝐋𝐒𝐋.

We shall now derive the expression for the threshold value of CM(0, 0) for the bivari-
ate case. For multivariate case, it is difficult to obtain a closed-form expression for the
threshold value. However, it would be interesting for future study.

Case I : 𝐃𝐔 < 𝐃𝐋, that is, d∗ = DU

Let 𝐝∗ = min(𝐃𝐋,𝐃𝐔) = 𝐃𝐔 < 𝐃𝐋. Then,

CM(0, 0) = 1
3

√
𝐃′

UΣ−1𝐃U ,

that is, C2
M(0, 0) = 1

9
𝐃′

UΣ
−1𝐃U = 1

9(1 − 𝜌2
12)

[
D2

2U

𝜎2
2

+
D2

1U

𝜎2
1

−
2𝜌12D1U D2U

𝜎1𝜎2

]
.

(5)

Now let USL1 = T1 + kU1
𝜎1 and USL2 = T2 + kU2

𝜎2 such that 𝐔𝐒𝐋 = T + KU × 𝝈,
where KU = diag(kU1

, kU2
) and 𝝈 = (𝜎1, 𝜎2)′.

Similarly, LSL1 = T1 − kL1
𝜎1 and LSL2 = T2 − kL2

𝜎2 such that 𝐋𝐒𝐋 = T − KL × 𝝈,
where KL = diag(kL1

, kL2
) with KU ≠ KL as otherwise the specification region will

become symmetric. Also note that kUi
, for i = 1, 2, is the distance of the USL of the ith

quality characteristic from the respective target in terms of the corresponding sigma
unit. The other elements of the matrices KU and KL may be similarly defined. Thus
D1U = kU1

𝜎1;D2U = kU2
𝜎2 and hence

C2
M(0, 0) = 1

9 (1 − 𝜌2
12)

×
[
k2

U1
+ k2

U2
− 2𝜌12kU1

kU2

]
.

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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Therefore, the threshold value of CM(0, 0) is

CT
M(0, 0) = 1

3

√√√√k2
U1

+ k2
U2

− 2𝜌12kU1
kU2

1 − 𝜌2
12

. (6)

For kU1
= kU2

= kU , say, that is, when both the USLs are at equal distances from their
respective targets in terms of the corresponding sigma units, formula 6 simplifies to
CT

M(0, 0) = kU

3

√
2

1+𝜌12
.

Case II : 𝐃𝐋 < 𝐃𝐔, i.e. d∗ = DL

Let 𝐝∗ = min(𝐃𝐋,𝐃𝐔) = 𝐃𝐋 ≤ 𝐃𝐔. Then D1L = kL1
𝜎1;D2L = kL2

𝜎2 and hence the
threshold value of CM(0, 0) is

CT
M(0, 0) = 1

3

√√√√k2
L1

+ k2
L2

− 2𝜌12kL1
kL2

1 − 𝜌2
12

. (7)

Also for KL1
= kL2

= kL, say, formula 7 simplifies to CT
M(0, 0) = kL

3

√
2

1+𝜌12
.

Case III : DiL > DiU for one i, while for the other DiU > DiL, i = 1, 2

Without loss of generality, suppose D1U < D1L and D2U > D2L. Here, d∗ =
(

D1U

D2L

)
.

Then the threshold value of CM(0, 0) will be

CT
M(0, 0) = 1

3

√√√√k2
L1

+ k2
U2

− 2𝜌12kL1
kU2

1 − 𝜌2
12

. (8)

Interestingly, the expressions of CT
M(0, 0) for all the three cases, as obtained from

Equations 6, 7, and 8, can be summarized as

CT
M(0, 0) = 1

3

√√√√k2
.1 + k2

.2 − 2𝜌12k.1k.2

1 − 𝜌2
12

, (9)

where k.1 = min(kU1
, kL1

) and k.2 = min(kU2
, kL2

).
Hence for a ‘just capable’ process, that is, when CM(0, 0) = CT

M(0, 0), from formula 9,
the threshold value, being a function of 𝜌12, is not unique (unlike univariate PCIs). Such
relationship between CT

M(0, 0) and 𝜌12 is quite desirable, as unlike univariate measure,
for a bivariate (or in general, multivariate) case, the variables are inter-related among
themselves and hence influence the process performance according to their strength of
correlation.

Also, for k.1 = k.2 = k., the general expression of the threshold value of CM(0, 0),
under bivariate setup, as given in formula 9 boils down to

CT
M(0, 0) =

k.

3
×

√
2

1 + 𝜌12
. (10)

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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Note that in such case, the specification limits boil down to the symmetric ones.
Now, when −1 ≤ 𝜌12 ≤ 0, for a just capable process, threshold value of CM(0, 0) will

lie within the interval [ k.

√
2

3
,∞), depending upon the position of T with respect to tol-

erance region. Also, for 0 ≤ 𝜌12 ≤ 1, the threshold value of CM(0, 0) will lie within the

interval [ k.

3
,

k.

√
2

3
]. Hence, considering these two cases together, for −1 ≤ 𝜌12 ≤ 1, the

threshold value of CM(0, 0) varies between [ k.

3
,∞) .

Moreover, in many cases, at first, the target is fixed and then as per requirement,
the upper and lower specification limits are established. Therefore, our 𝐔𝐒𝐋 and 𝐋𝐒𝐋,
which are expressed in terms of the matrices K1 and K2, are more realistic than the
existing concept of T = (3𝐔𝐒𝐋+𝐋𝐒𝐋)∕4 proposed by Boyles (1994) and Pearn et al.
(2001).

The threshold values of CM(0, 0), corresponding to various combinations of
(k.1, k.2), and 𝜌12 = −1(0.05)1, are presented in Table 1. A wide range of (k.1, k.2) values
have been covered in this table in a sense that a k.i, i = 1, 2, value less than 2 will make
the specification design too conservative, while the value greater than 4 may overlook
some serious problems present in the process.

A graphical representation of a part of Table 1 with k.1 = 2.0 and k.2 =
2.0, 2.5, 3.0, 3.5, 4.0 is given in Figure 1. Figures for other combinations of (k.1, k.2) can
be generated accordingly. Table 1 and Figure 1 clearly show that for 𝜌12 = ±1, the
threshold value becomes undefined. For any fixed value of (k.1, k.2), the threshold value
of CM(0, 0) is a decreasing function of the correlation coefficient (𝜌12) for 𝜌12 value up
to 0.25, and from 𝜌12 = 0.30, it starts to increase. Also for any fixed value of 𝜌12, the
threshold value of CM(0, 0) reaches local minimum values for k.1 = k.2 and increases
on either side of this point.

Finally, the threshold value of CM(0, 0) can be considered as the threshold value of
CM(u,v) for u ≥ 0, v ≥ 0 in general. This is because for 𝝁 = M = T, all the member
MPCIsof this superstructure boil down to CM(0, 0) (Chatterjee and Chakraborty,
2011) and the index value obtained at this stage is the minimum attainable value by a
process to be capable. When CM(0, 0) ≥ CT

M(0, 0) but CM(u, v) < CT
M(0, 0) for (u, v) ≠

(0, 0), the process is expected to be off target. On the other hand, if CM(u, v) ≥ CT
M(0, 0)

for u > 0 and v > 0, the process, apart from being potentially capable, is also supposed
to deliver the good. It is interesting to note that the same approach is followed in prac-
tice for univariate PCIs as well, where a process with Cp(u, v) ≥ 1, for u ≥ 0, v ≥ 0, is
considered to be capable, while ‘1’ is merely the threshold value of Cp = Cp(0, 0).
3 Plug-in estimators of the member indices of CM(u, v) and their estimation procedures

Vännman (1997) has rightly mentioned that only providing a capability index value is
not enough for characterizing a process. It requires exploring its properties to under-
stand the actual nature of the process. We now propose a plug-in estimator of CM(u, v),
which can be defined as

ĈM(u, v) = 1
3

√
(𝐝∗ − u𝐆∗)′Σ̂−1(𝐝∗ − u𝐆∗)

1 + v𝐆̂′Σ−1𝐆̂
, (11)

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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Fig. 1. Threshold values of CM (0, 0) for various values of 𝜌12, k.1 = 2.0 and k.2 = 2.0, 2.5, 3.0, 3.5, 4.0.

where 𝐆̂ = Â𝐝 and 𝐆̂∗ = Â𝐝∗, where Â = ((âi)) and âi = [max{Xi−Ti

DiU
,

Ti−X

DiL
}]. For

computational simplicity, here we shall consider only three combinations of the (u, v)
values, namely, (0, 0), (1, 0), and (0, 1).

3.1 Expectation of the plug-in estimator of CM(0, 0)

From formula 11, a plug-in estimator of CM(0, 0) is

ĈM(0, 0) = 1
3
×
√

d∗′ Σ̂−1d∗ = 1
n
×
√

(n − 1)d∗′S∗−1d∗, (12)

where S∗ is the sum of squares–sum of product matrix and S∗ = (n − 1)Σ̂−1 ∼ Wp(n −
1,Σ) with Wp(n− 1,Σ) denoting p-variate Wishart distribution with parameters (n− 1)
and Σ. Hence, from formula 12,

ĈM(0, 0) ∼ {CM(0, 0)} ×
√

n − 1 × 𝜒−1
n−p, (13)

where 𝜒−1
n−p denotes the inverse chi distribution with n − p degrees of freedom. In this

context, the inverse chi-square distribution is a continuous probability distribution
of a positive valued random variable whose reciprocal (multiplicative inverse) follows
chi-square distribution. The values of the density functions and the random number
generators of the inverse chi-square distribution are available in geoR package of the
R software (Ribeiro Jr and Diggle, 2001).
© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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Thus, for bn−p = 2
n−1

×
Γ( n−p−1

2
)

Γ( n−p
2
)

,

E[ĈM(0, 0)] =
√

n − 1 ×

{
Γ( n−p−1

2
)

Γ( n−p
2
)

}
× CM(0, 0), (14)

which implies, E[C̃M(0, 0)] = E[bn−pĈM(0, 0)] = CM(0, 0). (15)

Thus, C̃M(0, 0) is an unbiased estimator of CM(0, 0).

3.2 Expectation of the plug-in estimator of CM(1, 0)

From formula 11, the plug-in estimator of CM(1, 0) is

ĈM(1, 0) = 1
3
×
√

(d∗ − Ĝ
∗
)′Σ̂−1(d∗ − Ĝ

∗
)

=
√

n − 1
3

×
√

(d∗ − Ĝ
∗
)′S∗−1(d∗ − Ĝ

∗
),

(16)

where Ĝ
∗
= Âd∗ is a (q×1) vector whose ith element is given by Ĝ

∗
i = âid

∗
i = max[Xi −

Ti, (Ti − Xi) ×
dui

dli
], for i = 1(1)p.

As Ĝ
∗

is a function of X and hence is a random vector, (d∗ − Ĝ
∗
) = H∗ will also

be a random vector with a certain probability distribution. Then, for some particular
value of H∗, say h∗, we have

ĈM(1, 0)|H∗=h∗ =
1
3

√
h∗

′ Σ̂−1h∗

=
√

n − 1
3

√
h∗

′
S∗−1h∗

=
√

n − 1
3

√
h∗

′Σ−1h∗ ×

√
h∗

′
S∗−1h∗

h∗
′Σ−1h∗

.

(17)

Now, h∗
′
S∗−1h∗

h∗
′ Σ−1h∗

∼ 𝜒2−1
n−p, where 𝜒2−1

n−p stands for inverse chi-square distribution with
(n− q) degrees of freedom (Giri, 2004), and this is independent of the choice of h∗ and
hence of h∗

′
Σ−1h∗. Thus, from formula 17,

E
[
ĈM(1, 0)

]
= EH∗

[
E
(

ĈM(1, 0)|H∗=h∗

)]
=

√
n − 1
3

× EH∗

⎡⎢⎢⎣E
⎛⎜⎜⎝
√

H∗′Σ−1H∗ ×

√
H∗′S∗−1H∗

H∗′Σ−1H∗ |H∗=h∗

⎞⎟⎟⎠
⎤⎥⎥⎦

=
√

n − 1
3

× EH∗

[√
H∗′Σ−1H∗

]
× E

[√
𝜒2−1

n−p

]
.

(18)
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Again,

E
[
𝜒−1

n−p

]
= 1√

2
×
Γ
(

n−p−1
2

)
Γ
(

n−p
2

) . (19)

Hence

E
[
ĈM(1, 0)

]
=

√
n − 1

3
√

2
×
Γ
(

n−q−1
2

)
Γ
(

n−q
2

) × E
[√

H∗′Σ−1H∗
]
. (20)

Note that derivation of the exact expression of E
[√

H∗′Σ−1H∗
]

will be complicated.

We shall now study the nature of bias associated to E
[
ĈM(1, 0)

]
through a simula-

tion study. For this, we consider a hypothetical process having two correlated quality
characteristics. The upper and lower specification limits for the first quality charac-
teristic are, say, U1 = 200 and L1 = 100, respectively, while for the second quality
characteristic, these specification limits are U2 = 350 and L2 = 220, respectively. Thus,
d1 = 50, M1 = 150, d2 = 65, and M2 = 285.

For this specification region, let us consider two different sets of target values. For
the first case, let the target values for the two quality characteristics be T1 = 135 and
T2 = 300, respectively. This will make the specification region moderately asymmetric
with respect to the corresponding target vector. Again, for the second case, let T1 =
200 and T2 = 230, respectively. Thus in this case, the target vector, namely, T, highly
deviates from M, and hence the specification region is highly asymmetric with respect
to T.

Now, for each of these two T values, we simulate bivariate normal data with the
following mean vectors and the dispersion matrices, each for 10,000 times:

1. 𝝁 =
(

140
210

)
and Σ =

(
20 21.16

21.16 35

)
. Here, T < 𝝁 < M and the quality

characteristics are highly correlated with the correlation coefficient 𝜌 = 0.8.

2. 𝝁 =
(

140
210

)
and Σ =

(
20 13.23

13.23 35

)
.

Here also T < 𝝁 < M and the quality characteristics are moderately correlated
with the correlation coefficient 𝜌 = 0.5.

3. 𝝁 =
(

115
250

)
and Σ =

(
20 21.16

21.16 35

)
.

Here, 𝝁 < T < M and the quality characteristics are highly correlated with the
correlation coefficient 𝜌 = 0.8.

4. 𝝁 =
(

115
250

)
and Σ =

(
20 13.23

13.23 35

)
.

Here also,𝝁 < T < M and the quality characteristics are moderately correlated
with the correlation coefficient 𝜌 = 0.5.

© 2017 The Authors. Statistica Neerlandica © 2017 VVS.
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5. 𝝁 =
(

170
330

)
and Σ =

(
20 21.16

21.16 35

)
.

Here, T < M < 𝝁 and the quality characteristics are highly correlated with the
correlation coefficient 𝜌 = 0.8.

6. 𝝁 =
(

170
330

)
and Σ =

(
20 13.23

13.23 35

)
.

Here also, T < M < 𝝁 and the quality characteristics are moderately correlated
with the correlation coefficient 𝜌 = 0.5.

Thus we have considered three different positions of 𝝁 with respect to M and T.
Now, for moderately asymmetric specification region and for the aforementioned

six cases, let the bias incurred owing to estimation of CM(1, 0) by ĈM(1, 0) be denoted
by bias(1), bias(2), bias(3), bias(4), bias(5), and bias(6). Table 2 depicts the relationship
between the sample size (n) and the bias incurred owing to estimating CM(1, 0) by
ĈM(1, 0) for this case.

Again, for highly asymmetric specification region and for the aforementioned six
cases, let the bias incurred owing to estimation of CM(1, 0) by ĈM(1, 0) be denoted
by bias(7), bias(8), bias(9), bias(10), bias(11), and bias(12). Table 3 depicts the relationship
between the sample size (n) and the bias incurred by estimating CM(1, 0) by ĈM(1, 0)
for this case.

Similar tables can be constructed for other values of U , L, T, 𝝁, and Σ as well.
From Tables 2 and 3, the following can be observed:

1. The bias incurred owing to estimation of CM(1, 0) by ĈM(1, 0) is, in general,
negative.

Table 2. Relationship between the sample size (n) and the bias incurred owing to estimating CM (1, 0) by
ĈM (1, 0) for moderately asymmetric specification region

n 10 30 50 100 150 200 250 300

bias(1) −0.4497 −0.1182 −0.0681 −0.0331 −0.0218 −0.0163 −0.0130 −0.0108
bias(2) −0.4924 −0.1295 −0.0746 −0.0362 −0.0239 −0.0178 −0.0142 −0.0118
bias(3) −0.2012 −0.0529 −0.0305 −0.0148 −0.0098 −0.0073 −0.0058 −0.0048
bias(4) −0.2199 −0.0578 −0.0333 −0.0162 −0.0107 −0.0080 −0.0063 −0.0053
bias(5) −0.2160 −0.0568 −0.0327 −0.0152 −0.0105 −0.0078 −0.0062 −0.0052
bias(6) −0.2359 −0.0620 −0.0357 −0.0173 −0.0114 −0.0085 −0.0068 −0.0057

Table 3. Relationship between the sample size (n) and the bias incurred owing to estimating CM (1, 0) by
ĈM (1, 0) for highly asymmetric specification region

n 10 30 50 100 150 200 250 300

bias(7) −0.0822 −0.0216 −0.0124 −0.0060 −0.0040 −0.0030 −0.0024 −0.0020
bias(8) −0.0569 −0.0150 −0.0086 −0.0042 −0.0028 −0.0021 −0.0016 −0.0014
bias(9) −0.1370 −0.0360 −0.0207 −0.0101 −0.0066 −0.0050 −0.0040 −0.0033
bias(10) −0.0949 −0.0249 −0.0144 −0.0070 −0.0046 −0.0034 −0.0027 −0.0023
bias(11) −0.0274 −0.0072 −0.0041 −0.0020 −0.0013 −0.0010 −0.0008 −0.0006
bias(12) −0.0190 −0.0050 −0.0029 −0.0014 −0.0009 −0.0007 −0.0005 −0.0004
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2. The bias decreases with the increase in the sample size ( n).
3. For CM(1, 0), the bias decreases substantially for high values of sample sizes.
4. The performance of ĈM(1, 0) is better; that is, the bias is considerably smaller,

for highly asymmetric specification regions, as compared with the moderately
asymmetric specification regions, irrespective of the sample size.

5. The bias decreases with the increase in the value of the correlation coefficient
(𝜌). This implies that ĈM(1, 0) performs better for the processes, for which the
quality characteristics are highly correlated. This is certainly a desirable property,
as the motivation for defining CM(u, v), in general, was to assess the capability
of multivariate processes having correlated quality characteristics and where the
specification region is asymmetric with respect to the target vector.

3.3 Plug-in estimator of CM(0, 1) as its consistent estimator

From formula 11, the plug-in estimator of CM(0, 1) is

ĈM(0, 1) = 1
3

√
𝐝∗′ Σ̂−1𝐝∗

1 + 𝐆̂′Σ−1𝐆̂
,

(21)

where Ĝ = Âd is a (q × 1) vector whose ith element is given by
Ĝi = âidi = max[Xi − Ti, (Ti − Xi)] × di, for i = 1(1)p.
Now, following (Casella and Berger, 2007), as X and Σ̂ are consistent estimators

of 𝝁 and Σ, for a continuous function, h(X , Σ̂) → h(𝝁,Σ) almost surely. Thus, from
formula 21,

ĈM(0, 1) → 1
3

√
𝐝∗′Σ−1𝐝∗

1 +𝐆′Σ−1𝐆
= CM(0, 1), almost surely. (22)

Thus, ĈM(0, 1) is a consistent estimator of CM(0, 1).

4 Asymptotic expectations of the plug-in estimators of the member indices of
CM(u, v), for u = 0, 1 and v = 0, 1

Apart from E
[
ĈM(0, 0)

]
, the derivation of E

[
ĈM(u, v)

]
, for u = 0, 1 and v = 0, 1, is

complicated, and it is difficult to obtain any closed-form expression for them. However,
for sufficiently large samples, E

[
ĈM(u, v)

]
can be obtained using the multivariate 𝛿

method (Casella and Berger, 2007) separately for the following:

1. 𝝁 > T ;
2. 𝝁 < T ;
3. 𝜇i > Ti, for some i = 1(1)p and for others, 𝜇i < Ti; that is, here we consider a

mixture of cases I and II.
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Let

g(𝝁,Σ) = CM(u, v) = 1
3

√
M(𝝁,Σ)
N(𝝁,Σ)

, (23)

where

M(𝝁,Σ) = (d∗ − u G∗)′Σ−1(d∗ − u G∗), (24)

and

N(𝝁,Σ) = 1 + v 𝐆′Σ−1𝐆. (25)

Note that

𝛿g(𝝁,Σ)
𝛿𝝁

= 1
6
×
⎧⎪⎨⎪⎩

N(𝝁,Σ) 𝛿M(𝝁,Σ)
𝛿𝝁

− M(𝝁,Σ) 𝛿N(𝝁,Σ)
𝛿𝝁

[M(𝝁,Σ)N3(𝝁,Σ)]
1
2

⎫⎪⎬⎪⎭ , (26)

and

𝛿g(𝝁,Σ)
𝛿Σ

= 1
6
×

{
N(𝝁,Σ) 𝛿M(𝝁,Σ)

𝛿Σ
− M(𝝁,Σ) 𝛿N(𝝁,Σ)

𝛿Σ

[M(𝝁,Σ)N3(𝝁,Σ)]
1
2

}
. (27)

Case 1. When 𝝁 > 𝐓, that is, 𝜇i > Ti, for i = 1(1)q
Here, the ith diagonal element of A is ai =

𝜇i−Ti

dui
, for i = 1(1)p, and hence A can be

redefined as A = A1A2, where both A1 and A2 are (p × p) diagonal matrices with A1

having (𝜇i−Ti) as its ith diagonal element and A2 having 1
dui

as its ith diagonal element,
for i = 1(1)p . Then in the present context, for u = 0, 1, the expression of M(𝝁,Σ)
becomes

M(𝝁,Σ) = (d∗ − u G∗)′Σ−1(d∗ − u G∗)
= (d∗ − u Ad∗)′Σ−1(d∗ − u Ad∗)
= (d∗ − u A1A2d∗)′Σ−1(d∗ − u A1A2d∗).

(28)

This implies that
𝛿M(𝝁,Σ)

𝛿𝝁
= −2u d∗′A2Σ−1(Iq − uA1A2)d

∗

= −2u d∗′A2Σ−1(d∗ − uAd∗).
(29)

Similarly for v = 0, 1,

N(𝝁,Σ) = 1 + vd′A2A1Σ−1A1A2d. (30)

This implies that
𝛿N(𝝁)
𝛿𝝁

= 2v d′A2Σ−1A1A2d

= 2v d′A2Σ−1Ad.
(31)
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Again, for u = 0, 1,

𝛿M(𝝁,Σ)
𝛿Σ

= −(Σ−1)′(d∗ − u G∗)(d∗ − u G∗)′(Σ−1)′, (32)

and for v = 0, 1,

𝛿N(𝝁,Σ)
𝛿Σ

= 𝛿

𝛿Σ
[
1 + vG ′Σ−1G

]
= −v (Σ−1)′GG ′(Σ−1)′.

(33)

Case 2. When 𝝁 < 𝐓, that is, 𝜇i < Ti, for i = 1(1)p
Here, the ith diagonal element of ‘A’ is ai =

Ti−𝜇i

dli
, for i = 1(1)p, and hence A can

be redefined as A = A3A4, where both A3 and A4 are (p× p) diagonal matrices with A3

having (Ti −𝜇i) as its ith diagonal element and A4 having 1
dli

as its ith diagonal element,
for i = 1(1)p.

Then for 𝝁 < T and for u = 0, 1, the expression of M(𝝁,Σ) becomes

M(𝝁,Σ) = (d∗ − u G∗)′Σ−1(d∗ − u G∗)
= (d∗ − u Ad∗)′Σ−1(d∗ − u Ad∗)
= (d∗ − u A3A4d∗)′Σ−1(d∗ − u A3A4d∗).

(34)

This implies that
𝛿M(𝝁,Σ)

𝛿𝝁
= −2u d∗′A4Σ−1(Iq − uA3A4)d

∗

= −2u d∗′A4Σ−1(d∗ − uAd∗).
(35)

Similarly for v = 0, 1,

N(𝝁,Σ) = 1 + vd′A3A4Σ−1A3A4d. (36)

This implies that
𝛿N(𝝁)
𝛿𝝁

= 2v d′A4Σ−1A3A4d

= 2v d′A4Σ−1Ad.
(37)

Interestingly, because the case is based upon the relative position of 𝝁 with respect to
M and because Σ is independent of the change in origin, the expressions for 𝛿M(𝝁,Σ)

𝛿Σ
and 𝛿N(𝝁,Σ)

𝛿Σ
will remain the same as in case I.

The third case, that is, when for some ‘i’ 𝜇i > Ti, while for others 𝜇i < Ti, for
i = 1(1)p, the computations for 𝛿M(𝝁,Σ)

𝛿𝝁
and 𝛿N(𝝁,Σ)

𝛿𝝁
are laborious but can be carried out

following the previous two cases. Moreover, because the expressions for 𝛿M(𝝁,Σ)
𝛿Σ

and
𝛿N(𝝁,Σ)

𝛿Σ
were the same for both cases I and II, those will remain the same for case III as

well.
Thus using the expressions for 𝛿M(𝝁,Σ)

𝛿𝝁
, 𝛿N(𝝁,Σ)

𝛿𝝁
, 𝛿M(𝝁,Σ)

𝛿Σ
, and 𝛿N(𝝁,Σ)

𝛿Σ
, as obtained from

the aforementioned three cases and from the ‘multivariate 𝛿 method’ (Casella and
Berger, 2007), we can conclude that for sufficiently large sample and for u = 0, 1 and
v = 0, 1, E

[
ĈM(u, v)

]
= g(𝝁,Σ) = CM(u, v).
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5 A real-life example

We are now in a position to discuss the properties of CM(u, v), which we have already
studied, in the light of a real-life example. To demonstrate the performance of CM(u, v),
for u = 0, 1 and v = 0, 1, we consider the data set that was originally used by Sultan
(1986). Several authors like Chan, Cheng and Spiring (1988) and Chen (1994) have
made use of this data set. The data consist of 25 observations of a process that has two
quality characteristics of interest, namely, Brinell hardness (H) and tensile strength (S).
The [USL, LSL] of ‘H’ were [241.3, 112.7] with target set at 177, while the specifications
for ‘S’ were [73.30, 32.70] with T = 53. This suggests that both H and S were symmetric
about their respective targets.

However, before assessing the capability of the process, we need to check the validity
of the assumption of multivariate normality of the present data. While testing the mul-
tivariate normality of the data, it is observed that the p-value associated with Royston’s
test is 0.02586 (using the ‘royston’ and ‘MVN’ packages of the open-source software
R). As the p-value is less than 0.05, it is logical to expect that the underlying distribution
of the present data set is not multivariate normal.

In order to assess the capability of the process, we now transform the data using
the Box–Cox power transformation (Box and Cox, 1964). For multivariate Box–Cox
power transformation, we have used the package ‘car’ of the open-source software R.
The vector of transformation parameters is found to be 𝜆 = (1, 2) with the correspond-
ing p-value for the associated likelihood ratio test being 0.2250. The transformed data
are given in Table 4.

The plotted data with the modified specification region, the modified target, and the
elliptical process region are given in Figure 2.

The p-value corresponding to Royston’s multivariate normality test is 0.1103. There-
fore, it is logical to expect that the transformed data set in Table 4, indeed, follows
multivariate normal distribution.

Moreover, as the data set has been transformed to have multivariate normal dis-
tribution, it is now required to transform USL, LSL, and T, by virtue of the same
transformation. The transformed specification limits and targets for Hnew and Snew are
USLHnew

= 240.3, LSLHnew
= 111.7, THnew

= 176, USLSnew
= 2685.945, LSLSnew

=
534.145, and TSnew

= 1404. Also, the correlation coefficient between Hnew and Snew is
0.846.

Table 4. Transformed data set
Sample no.

Variable 1 2 3 4 5 6 7 8 9 10

Hnew 143 200 160 181 148 178 162 215 161 141
Snew 584.32 1624 1127.625 1425.82 1141.92 1325.625 1052.905 1745.905 1170.78 1118.145

11 12 13 14 15 16 17 18 19 20
Hnew 175 187 187 186 172 182 177 204 178 196
Snew 1641.145 1710.625 1693.12 1624 1219.68 1635.42 1279.68 1517.505 1294.905 1675.705

21 22 23 24 25 — — — — —
Hnew 160 183 179 194 181 — — — — —
Snew 1034.625 1452.105 1310.22 1652.625 1545.18 — — — — —
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Fig. 2. Plot for transformed version of Sultan’s (1986) data.

Thus, although, apparently the specification region was symmetric with respect to
the target vector, the transformed specification region is asymmetric about the trans-
formed target vector, namely, Tnew = (THnew

,TSnew
) = (177, 1404). This is similar to the

observation by Boyles (1994) regarding possible reasons of asymmetry in specification
limits.

Based on the data in Table 4, d = (64.3, 1075.9)′, d∗ = (64.3, 869.855)′, and A =(
0.0031 0

0 0.0228

)
. Thus, G = Ad = (0.2, 24.5868) and G∗ = Ad∗ = (0.2, 19.8782).

Also, 𝝁 = (176.20, 1384.122)′, Σ̂ =
(

338 4435.277
4435.277 81, 311.074

)
.

Hence ĈM(0, 0) = 1.1672, ĈM(1, 0) = 1.1623, ĈM(0, 1) = 1.1551, and ĈM(1, 1) =
1.1503. Also, the threshold value of ĈM(0, 0) is computed as 1.1672. Thus, the process is
potentially just capable as the threshold value coincides with the value of ĈM(0, 0), and
this is supported by Figure 2 as well. All the other MPCIs are found to have values less
than the threshold value. This connotes that the actual capability level of the process
is not satisfactory.

Also, the close values of ĈM(0, 0) and ĈM(1, 0) suggest that the process suffers more
owing to lack of proximity towards the target than owing to the prevailing level of dis-
persion. This observation is justified by the data itself. The values of Snew vary between
584.320 and 1745.905 with the target being 1404, while the range of the values of Hnew

is 140 to 214 and the target is 176. The wide range of Snew values strongly suggests that
the process suffers from severe off-centeredness corresponding to this quality charac-
teristic. Although owing to the high correlation between Hnew and Snew, it will not
be wise to conclude that the off-centeredness of the overall process is contributed by
Snew only. Therefore, the process centering needs immediate attention of the concerned
authority.
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Moreover, one needs to take a look on the prevailing dispersion scenario of the pro-
cess as well. Because, despite the ĈM(1, 0) value being close to the ĈM(0, 0) value, it is
still less than the threshold value, indicating a high degree of dispersion of the quality
characteristics. Also, as can be seen in Figure 2, the most lower part of the ellipti-
cal process region lies slightly outside the rectangular specification region, which also
indicates high degree of asymmetry of the quality characteristics. Thus, CM(u, v) cor-
rectly assesses the capability of the process under consideration, by concluding that it
is not capable of performing satisfactorily.

In this context, the estimated values of the variances of Hnew and Snew (viz., 338
and 81,311.074, respectively) are widely apart; we have also standardized the data
given in Table 4, following Tano and Vännman (2013). For the transformed data, we
have CM(0, 0) = 1.167224, CM(1, 0) = 1.162525,CM (0, 1) = 1.15971, and CM(1, 1) =
1.155041 with the threshold value being 1.67224. Thus the results for the standard-
ized and non-standardized data set almost coincide and yield identical interpretation
about the health of the process.

Sultan’s (1986) data have been used by many authors several times in order to
compare the performances of several MPCIs (Chan et al., 1991; Chen, 1994; and
Polansky, 2001, among others). Among them, Chan et al. (1991) and Chen (1994)
have assumed multivariate normality of the data and have concluded that the pro-
cess is capable. On the contrary, Polansky (2001) has addressed the problem from
non-parametric view point and has shown using kernel estimation procedure that the
process is actually poor in terms of capability. According to Polansky (2001), such
incapability of the process is due to a point that is near the boundary of the specifi-
cation set. This is evident from Figure 2, featuring the plot of the transformed data
as well. Thus, our view regarding the capability of the process is concurred by Polan-
sky’s (2001) observation. This is because in all the cases except the case of Polansky
(2001), the underlying distribution of the quality characteristics was assumed to be
multivariate normal, while actually this is not the case. Consequently, the process was
wrongly considered as capable, while in reality, it is actually far from being so. This
strongly argues for checking the underlying distribution of the quality characteristics
before proceeding with the capability assessment of a process.

Moreover, our approach of transforming the data to multivariate normality and
then applying CM(u, v) is easier to execute as compared with using Polansky’s (2001)
MPCI. Also, the salient features of CM(u, v), like the threshold value and acknowledg-
ing asymmetry of the loss function, makes it easier to interpret than Polansky’s (2001)
MPCI and thereby fulfills our objective of defining user-friendly MPCIs for assess-
ing capability of processes with more than one correlated quality characteristics and
asymmetric specification region.

6 Concluding remarks

In the present article, we have discussed some very crucial as well as highly desir-
able properties of a superstructure of MPCIs CM(u, v) for asymmetric specification
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region. The superstructure is designed in such a manner that by varying u and v, one
can make a trade-off between process centering and proportion of non-conformance
depending upon the situation. We have also derived the expression for threshold value
of CM(0, 0). This helps in the decision-making procedure regarding the quality of the
process. Moreover, this superstructure acknowledges asymmetry in the loss function.
The estimation procedures for the plug-in estimators of the member indices of CM(u, v)
have been discussed in detail. A real-life example has been provided to strengthen the
theory developed in this article.
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