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ABSTRACT
Process Capability Index (PCI) is a very popular tool for assess-
ing performance of processes (often involving a single quality
characteristic). Multivariate process capability indices (MPCI) are
comparatively new to the literature and hence often involve some
difficulties in practical applications. One such hurdle is multivari-
ate normality assumption of the underlying distribution of the
quality characteristics. While such assumption gives some com-
putational as well as theoretical advantage in formulating MPCIs,
often data encountered in practice do not follow multivariate
normal distribution due to several reasons. Consequently, the
computed values of the MPCIs may give misleading results. In
the present article, we have made performance analysis of some
MPCIs in the light of a dataset which has been widely used in
the literature, particularly in the context of MPCIs. Most of these
MPCIs were already applied to the said data in the literature and
our objective is to make their comparative performance analysis.
In this context, the data, though actually non-normal, is often con-
cluded as multivariate normal by several researchers. Therefore,
while making the performance analysis of the MPCIs, this aspect
has also been incorporated to put emphasis on the importance
of distributional assumption in a multivariate process capability
analysis.
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1. Introduction

Process Capability Index (PCI) is a very important yardstick for assessing the
overall performance of a process. Initially, PCIs were defined assuming that the
process under study has only one quality characteristic of interest. Under the
assumption of normality of the distribution of the quality characteristic under
consideration, the four classical PCIs for univariate processes with bilateral
specification limits are

Cp = USL − LSL
6σ

, (1)

Cpk = d − |μ − M|
3σ

, (2)
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Cpm = d
3
√

σ 2 + (μ − T)2
, (3)

Cpmk = d − |μ − M|
3
√

σ 2 + (μ − T)2
, (4)

where USL and LSL are, respectively, the upper and lower specification limits
of a process, d = USL−LSL

2 , M = USL+LSL
2 and T is the target of the process

(refer to Kotz and Johnson 1992-2000; Pearn and Kotz 2007; Chakraborty
and Chatterjee 2016; Chatterjee and Chakraborty 2014 and the references
there-in).

Although quality characteristics with symmetric (with respect to the stip-
ulated target) bilateral specification limits are mostly encountered in practice,
those with asymmetric specification limits are also not rare in industries (refer
to Boyles 1994). Chen and Pearn (2001) defined a super-structure of PCIs for
asymmetric specification limits which is defined as

C
′′
p(u, v) = d∗ − uF∗

3
√

σ 2 + vF2
, (5)

where F = max{d∗(μ−T)
du

, d∗(T−μ)
dl

} and F = max{d(μ−T)
du

, d(T−μ)
dl

}. For u = 0, 1
and v = 0, 1, C′′

p(0, 0) = C′′
p, C′′

p(1, 0) = C′′
pk, C′′

p(0, 1) = C′′
pm, and C′′

p(1, 1) =
C′′

pmk which are analogous to Cp, Cpk, Cpm, and Cpmk defined in Eq. (4).
However, with the increasing use of modern cutting-edge technologies in

industries, the concept of univariate processes (i.e., the processes producing
items having a single important quality characteristic) is becoming rare day by
day. Now a days, often a production engineer has to deal with more than one
inter-related quality characteristics at a time. This necessitates use of the so-
called multivariate process capability indices (MPCI).

Although univariate PCIs grossly out-number MPCIs in the literature (refer
Pearn and Kotz (2007) and the references there-in), the area is attracting more
and more eminent statisticians day by day due to its huge potential application.

One of the biggest challenges faced by the researchers in this field is the
scarcity of data. Often it becomes difficult to obtain raw data on a single quality
characteristic due to several reasons including ignorance among the concerned
authority as well as the shop-floor people about the importance of such data,
faulty data collection and storage system and so on. The situation worsens for
multi-dimensional processes, as then one has to collect data on more than one
quality characteristics at a time, so as to capture the inter-dependence of those
quality characteristics. On the other hand, one cannot deny importance of such
data in validating a new model in the context of multivariate process capability
analysis. The only option left to the researchers is to reuse the data already
available in the literature.
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Sultan’s (1986) data are a very popular dataset, which has been used time and
again to study the performance of several MPCIs. However, most of these MPCIs
are defined under some distributional assumptions, which need to be adhered
for their successful applications. Hence, prior to the use of a dataset, one should
check its compatibility with the MPCI under consideration as otherwise it may
give totally misleading results.

In this context, while studying effect of testing normality in the context of
estimating univariate process capability indices, Han (2006) has observed that
in case the underlying distribution of the process is not known before hand, one
should use test(s) for normality to ressolve the problem before proceeding to
select appropriate PCI. This is true for multivariate processes as well.

Interestingly, in the context of univariate process capability analysis, study
on impact of (univariate) normality assumption are widely available (refer to
Han 2006; Pearn and Kotz 2007 and the references there-in). However, to the
best of our knowledge, from the perspective of multivariate processes, such
study is yet to be carried out.

In the present article, we have revisited Sultan’s (1986) data and have critically
studied the performance of some MPCIs, particularly from the view point of
distributional assumptions of those MPCIs. We have primarily selected those
MPCIs, on which Sultan’s (1986) data have already been applied in the literature.
This helps in easy understanding of impact of multivariate normality assump-
tion on respective MPCIs, in a sense that, applying an MPCI, which is based on
multivariate normality assumption, on a multivariate non-normal data, is very
likely to yield misleading result.

In Sec. 2, a brief description is given regarding Sultan’s (1986) data. Section 3
critically examines some MPCIs where these data were used, in the light of
multivariate normality assumption followed by a concluding remark in Sec. 4.

2. On Sultan’s (1986) dataset

Sultan’s data are one of the most widely used datasets in the context of process
capability analysis. The data were originally published by Sultan (1986) in the
context of constructing acceptance charts for two correlated quality character-
istics. The complete dataset is given in Table 1.

The plotted data with the rectangular specification region and the target are
given in Figure 1.

The data in Table 1 consist of 25 observations of a process that has two
correlated quality characteristics of interest, namely brinell hardness (H) and
tensile strength (S).

For H, the specifications are (USLH , TH , LSLH) = (241.3, 177, 112.7), while
for S, the specifications are (USLS, TS, LSLS) = (73.30, 53, 32.70), where, USLX ,
TX , and LSLX stand for the upper specification limit (USL), target (T), and lower
specification limit (LSL) of a particular quality characteristic, say X.
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Table 1. Dataset pertaining to a manufacturing industry with two correlated quality characteristics
and 25 randomly selected sample observations (refer to Sultan 1986).

Sample No.

Characteristic 1 2 3 4 5 6 7 8 9 10

Brinell Hardness (H) 143 200 160 181 148 178 162 215 161 141
Tensile Strength (S) 34.2 57.0 47.5 53.4 47.8 51.5 45.9 59.1 48.4 47.3

Sample No.

Characteristic 11 12 13 14 15 16 17 18 19 20

Brinell Hardness (H) 175 187 187 186 172 182 177 204 178 196
Tensile Strength (S) 57.3 58.5 58.2 57.0 49.4 57.2 50.6 55.1 50.9 57.9

Sample No.

Characteristic 21 22 23 24 25 – – – – –

Brinell Hardness (H) 160 183 179 194 181 – – – – –
Tensile Strength (S) 45.5 53.9 51.2 57.5 55.6 – – – – –

120 140 160 180 200 220 240

0
20

40
60

80
10

0

H

S

TARGET

Figure 1. Plot for Sultan’s (1986) data.

This suggests that, both “H” and “S” are symmetric about their respective
targets. Moreover, since, based upon the data given in Table 1, the correlation
coefficient between “H” and “S” is 0.834, the capability assessment of the
process with respect to individual quality characteristics is not advocated—
rather, suitable MPCI should be used for the said purpose.

Although Sultan’s data (1986) were originally used for acceptance chart,
Chen (1994) first used the data in the context of multivariate process capability
analysis and due to the scarcity of suitable multivariate data, gradually these data
became very popular among the statisticians and quality engineers, who used
this for assessing the performance of their newly proposed MPCIs.
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Most of these MPCIs are defined based on the assumption that the underlying
distribution of the quality characteristics under consideration is multivariate
normal (refer to Chen 1994; Shahriari 2009; Pan 2010; Wang 1998; Wang
2000 and so on). However, one should test the authenticity of such strong
distributional assumption rigorously before actually using this, because the
inference regarding the actual health of a process may largely depend on such
assumption (refer to Wang 2000).

Therefore, before using a dataset, Sultan’s (1986) dataset in particular, in a
multivariate process capability analysis, we need to check the validity of the
assumption of multivariate normality of the present data. We use R software
for this purpose and observe that

1. The p-value associated with Shapiro–Wilk test is 0.006764,
2. The p-value associated with Royston’s test is 0.02586.

Since both these p-values are less than 0.05, it is logical to expect that the
underlying distribution of the present dataset is not multivariate normal.

Interestingly, if we still ignore the correlation between H and S, individually,
H is found to be normal with the p-value for Shapiro–Wilk normality test being
0.6271, while S is non-normal with p-value 0.007877.

Hence, the capability of the process can be assessed through either of the
following two approaches:

1. Transform the original data into multivariate normal and then apply suitable
MPCIs;

2. Directly apply MPCIs designed for multivariate non-normal data.

For transforming the data into a multivariate normal one, multivariate Box–
Cox method will be applied here. This method uses separate transformation
parameter for each variable, which is very relevant in our case as here one
variable (H) is normal and the other one is non-normal. Moreover, here clas-
sification of the variables in dependent/independent form is not required.
When the variables are finally transformed into joint normality, they become
approximately linearly related, constant in conditional variance and marginally
normal in distribution.

We have used the packages “mvnormtest” and “MVN” of the software R
for the purpose of the said transformation. Here, the vector of transformation
parameter is λ = (1, 2). The transformed data are given in Table 2.

Note that, since “H” was already having a normal distribution, its values
remain unchanged; while, for “S” the transformed values have significantly
increased. The correlation coefficient between Hnew and Snew is 0.846, which
is slightly more than that between the original variables.

Moreover, since the dataset has been transformed to have multivariate normal
distribution, it is now required to transform USL, LSL, and T, by virtue of the
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same transformation. The transformed specification limits and targets for Hnew
and Snew are as follows:

USLHnew = 240.3
LSLHnew = 111.7
THnew = 176

⎫⎬⎭
USLSnew = 2685.945
LSLSnew = 534.145
TSnew = 1404.000

⎫⎬⎭
Thus, although, apparently the specification region was symmetric with

respect to the target vector, the transformed specification region is asymmet-
ric about the transformed target vector, namely Tnew = (THnew , TSnew)

′ =
(177, 1404)

′ . This is similar to the observation by Boyles (1994) regarding
possible reasons of asymmetry in specification limits.

The plotted data with the modified specification region, the modified target,
and the elliptical process region are given in Figure 2.

The p-values for the Shapiro–Wilk multivariate normality test and Royston’s
test are 0.07627 and 0.1103, respectively, indicating toward the successful trans-
formation of the data into multivariate normal. Therefore, the MPCIs (with
multivariate normality assumption), for which initially Sultan’s (1986) original
data were used, need to be recomputed for the transformed data given in
Table 2.

In this context, from Figure 2, it is evident that the sample observations are
highly scattered from the target. Even, the elliptical process region is slightly
outside the rectangular specification region. Therefore, it is logical to conclude
that the process is not performing satisfactorily.

120 140 160 180 200 220 240
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Figure 2. Plot for Sultan’s (1986) transformed data.
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3. Revisiting some MPCIs which used Sultan’s (1986) data

We shall now review some of the MPCIs which used Sultan’s data and shall make
a performance analysis of those indices in light of the distributional assumption
of the concerned quality characteristics. For this, we shall divide the MPCIs
under consideration into following classes:

1. MPCIs using a principal component analysis.
2. MPCIs based on ratio of a process region and specification region.
3. MPCIs based on the concept of proportion of non-conformance.
4. Vector-valued MPCIs.

3.1. MPCIs using the principal component analysis

Principal component analysis (PCA) is used in process capability studies for
dimension reduction which, in turn, often enables us to adopt simpler formu-
lation. For example, Sultan’s (1986) data are originally a bivariate one. However,
after application of PCA, one can retain a single principal component (PC) with
a very insignificant loss of variation (0.12%) and as a result, univariate PCIs can
be applied to the first PC to assess capability of the process.

3.1.1. MPCIs given by Wang and Chen (1998)
Wang and Chen (1998) first used the concept of the principal component anal-
ysis (PCA) in the context of a process capability analysis. Under the assumption
of multivariate normality of data, they defined MPCIs MCp, MCpk, MCpm, and
MCpmk analogous to Cp, Cpk, Cpm, and Cpmk [see Eq. (4)], respectively, as

MCp =
( v∏

i=1
Cp:PCi

)1/v

, (6)

MCpk =
( v∏

i=1
Cpk:PCi

)1/v

, (7)

MCpm =
( v∏

i=1
Cpm:PCi

)1/v

, (8)

MCpmk =
( v∏

i=1
Cpmk:PCi

)1/v

. (9)

Here, v (≤ q) is the number of principal components which are retained.
Also, Cp:PCi , Cpk:PCi , Cpm:PCi , and Cpmk:PCi represent, respectively, the univariate
measures of PCIs viz. Cp, Cpk, Cpm, and Cpmk for the ith principal component,
for i = 1(1)v.
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Based on Sultan’s data, Wang and Chen (1998) computed MCp = MCpk =
MCpm = MCpmk = 1.18. Hence, they concluded that the process is performing
satisfactorily with the process mean being close to the stipulated target.

However, since for Sultan’s (1986) data, the assumption of multivariate nor-
mality is violated, generalization of PCIs like Cp and so on, which are defined
under the said assumption, are not applicable here. Hence, we need to reassess
the capability level of the process afresh.

In this context, multivariate normality assumption is not mandatory for PCA.
However, in the subsequent step, i.e., while selecting appropriate MPCI, one
needs to pay attention to the respective distributional assumption.

For the transformed data in Table 2, the vector of eigen values is λ =(
λ1
λ2

)
=
(

81553.2905
95.7835

)
. Also, the two eigen vectors are u1 =

(
0.05453
0.9985

)
and u2 =

( −0.9985
0.0545

)
.

Here, we have denoted the vectors through bold-faced letters.
Thus, variation explained by the first principal component (PC) is λ1

λ1+λ2
=

0.9988, i.e., 99.88% of the total variation and that by the second PC is λ2
λ1+λ2

=
0.0012, i.e., 0.12% of the total variation. Therefore, it is sufficient to retain the
first PC only.

As has already been discussed in Sec. 2, for the transformed data, the speci-
fication region has become asymmetric with respect to the target and hence the
PCIs given in Eq. (4) will no more be applicable here. Rather, one has to use the
PCIs given in Eq. (5) to assess the capability of the process.

For the first principal component corresponding to the data in Table 2,
MC′′

p = C′′
p:PC1

= 1.017906, MC′′
pk = C′′

pk:PC1
= 0.9947, MC′′

pm = C′′
pm:PC1

=
1.0177, and MC′′

pmk = C′′
pmk:PC1

= 0.9946.
Now, following Chatterjee and Chakraborty (2014) the threshold value of

C′′
p:PC1

is 0.80911, which means the process is potentially capable. The values of
all the other MPCIs are also larger than this threshold value, indicating towards
the satisfactory performance of the process. However, as has already been
observed, the process, as represented by the transformed data (vide Figure 2), is
not performing satisfactorily and the MPCIs given by Wang and Chen (1998) fail
to capture this phenomenon.

3.1.2. Tano and Vannman’s (2013) MPCI
Tano and Vannman (2013) have proposed an MPCI based only on the first
principal component. The authors observed that, although the variability with
respect to a quality characteristic may apparently look like moderate or small,
the same amount of variability, when considered with respect to the respective
specification limits, may be quite high and may even exceed the specification
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span. This made the authors standardize the variables before applying the so-
called PCA.

If there exists q correlated quality characteristics represented by q random
variables X1, X2, . . . , Xq, then for the ith random variable, the authors suggested
the following standardization:

X(T)
i = Xi − Mi

di
, ∀i = 1(1)q, (10)

where Mi = Ui+Li
2 and di = Ui−Li

2 .
Let λ

(T)
1 and U(T)

1 denote the first eigen value and the first eigen vector,
respectively, and PC(T)

1 denotes the first principal component corresponding to
the standardized data. Tano and Vannman (2013) have formulated the upper
and lower specification limits of PC(T)

1 as USLPC(T)
1

= 1
max

i
|U(T)

1i | and LSLPC(T)
1

=

− 1
max

i
|U(T)

1i | , respectively, where, max
i

|U(T)
1i | is the maximum absolute value of

the components of U1(T).
Then based on PC(T)

1 and analogous to Cp, Tano and Vannman (2013) defined
a new MPCI as

Cp,TV = 1

3
√

λ
(T)
1 × {max

i
|U(T)

1i |}
, (11)

Tano and Vannman (2013) used the original dataset given in Table 1 and
computed Cp,TV = 1.216, a threshold value k0 = 1.1124 and the value of a lower
confidence bound (LCB) as 0.924 < k0. Hence, the process is not performing
satisfactorily.

Let us now observe the performance of Cp,TV in the context of Sultan’s
transformed data given in Table 2.

Following Tano and Vannman (2013), we first standardize the data in Table 2.

For these standardized data, the mean vector is μ(T) =
(

0.0031
−0.21

)
and the

dispersion matrix is �(T) =
(

0.0817 0.0641
0.0641 0.0702

)
.

The first eigen value and the first eigen vector for the standardized data are

λ
(T)
1 = 0.1404 and u(T)

1 =
( −0.7380

−0.6748

)
.

Therefore, max
i=1,2

|û(T)
1i | = 0.7380 and hence, USLPC(T)

1
= 1/0.7380 = 1.3549

and LSLPC(T)
1

= −1.3549.

Thus, from Eq. (11), Ĉp,TV = 1.2054. Although, apparently, this indicates
toward a satisfactory process performance, a deeper insight into the process will
reveal a completely different picture. Following Tano and Vannman (2013), the
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lower confidence bound (LCB) for Cp,TV is 0.9157, while the threshold value is
k0 = 1.0809 which exceeds the LCB value and hence the process is not capable.

In this context, Tano and Vannman (2013) did not standardize the target
vector and consequently, did not check whether the specification limits are
symmetric or not.

For the normalized data of Table 2, the target vector, after standardization,
becomes T(T) = (0, −0.1915)′. Hence for the first principal component, follow-
ing Wang and Chen (1998), the target vector will be TPC(T)

1
= û1

(T)′T(T) =
0.1292 �=

LSL
PC(T)

1
+USL

PC(T)
1

2 = 0, which means that the specification region
is asymmetric with respect to the standardized target vector and hence Cp,TV ,
which is defined analogous to Cp, will not be applicable here. Rather we have to
define an MPCI,analogous to C′′

p as follows:

C′′
p,TV =

d∗
PC(T)

1

3
√

λ
(T)
1

, (12)

where d∗
PC(T)

1
= min{dl,PC(T)

1
, du,PC(T)

1
}, with dl,PC(T)

1
= TPC(T)

1
− LSLPC(T)

1
and

du,PC(T)
1

= USLPC(T)
1

− TPC(T)
1

.
Thus, for transformed and standardized Sultan’s (1986) data, C′′

p,TV = 1.0905.
Note that, since the concepts of threshold value and LCB were defined

by Tano and Vannman (2013) for symmetric specification region, they will
not be applicable in the present context. However, following Chatterjee and
Chakraborty (2014), the proportion of nonconformance (PNC) associated with
the C′′

p,TV value of 1.0905 is 0.1378. This implies, under the present production
scenario, the maximum observable PNC will be 13.78 % and this is quite
high. Therefore, the transformed and standardized data also indicate toward
the unsatisfactory performance of the process. Infact, the process is not even
potentially capable, as both Cp,TV and C′′

p,TV measure potential capability of a
process.

In this context, for the transformed and standardized data, only 92.35 % of
the total variability is explained by the first principal component, while the
remaining 7.65 % of the total variability still remain unexplained.

If the original data (in Table 1) is standardized, as is done by Tano and
Vannman (2013), the explained variation by the first principal component will
be only 91.69 %, i.e., the situation will be even worse.

3.1.3. Wang and Du’s (2000) MPCI
In the context of the MPCIs based on PCA, Wang and Du (2000) have suggested
the use of MPCIs given by Wang and Chen (1998) for multivariate normal
processes, while for rest of the processes, they followed Luceno (1996) to define
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an MPCI, namely MCpc, analogous to Cp, as follows:

MCpc = (

v∏
i=1

Cpc;PCi)
1/v, (13)

where v is the number of significant principal components, Cpc;PCi is the value
of Cpc = USLi−LSLi

6
√

π
2 E|Yi−M| (vide Luceno 1996) corresponding to the ith PC, say

Yi, for i = 1(1)v and USLi, LSLi, and Mi are, respectively, the USL, LSL and
specification mid-point for the ith PC, for i = 1(1)m.

In this context, the authors, assuming the process corresponding to the data
in Table 1 as a multivariate normal one, used the MPCIs given by Wang and
Chen (1998) and hence concluded that the process is performing satisfactorily.

We used the original data as given in Table 1 and since it is not following
multivariate normal distribution, we have used Luceno’s (1996) index given in
Eq. (13) for the purpose of process capability analysis and have observed that

MCpc = 1.245013. Also, following Luceno (1996), the 95% confidence
interval for MCpc is (1.9088, 2.5910). Since the observed value of MCpc is smaller
than the lower confidence limit, one can conclude, with 95% confidence, that the
process is not even potentially capable and hence there is no point in computing
other MPCI values analogous to Cpk, Cpm, and Cpmk.

Therefore, although Wang and Du (2000) originally considered the process to
be capable, application of their MPCI viz. MCpc to Sultan’s (1986) transformed
data clearly indicated toward the poor performance of the process.

3.2. MPCIs defined as the ratio of the specification region and the process region

3.2.1. MPCIs Given by Taam, Subbaiah, and Liddy (1993)
The MPCIs given by Taam, Subbaiah, and Liddy (1993) are among the oldest
MPCIs in the literature of statistical quality control. The authors defined an
MPCI analogous to Cp as

MCp = Volume of modified tolerance region
Volume of the 99.73% process region

= |ρ∗|− 1
2 , (refer Pan and Lee (2010)). (14)

where ρ∗ is the correlation matrix corresponding to the quality characteristics
under consideration.

Again, analogous to Cpm, Taam, Subbaiah, and Liddy (1993) defined MCpm
as,

MCpm = Vol. (Modified tolerance region)
Vol. ((X − μ)′�−1

T (X − μ) ≤ k(q))

= MCp × D−1 (15)
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where X ∼ Nq(μ, �), �T = E[(X−T)(X−T)′], k(q) is the 99.73th percentile of
χ2 distribution with q degrees of freedom and D = {1+ (x−μ)′�−1

T (x−μ)} 1
2 .

Although Taam, Subbaiah, and Liddy (1993) themselves did not apply Sul-
tan’s (1986) data to their MPCIs, performance of their MPCIs has been analyzed
and compared with a number of other MPCIs in the literature, at different
points in time. Moreover, these are among the most famous MPCIs among the
practitioners. Hence, it is worthy to investigate the performance of MCp and
MCpm in the light of the assumption of multivariate normality of the underling
process distribution.

Now, since in the present context, there are only two quality characteristics,
ρ∗ will boil down to ρ. For the data in Table 2, ρ = 0.8460 and D = 1.010954.
Hence, MCp = 1.8757 and MCpm = 1.8533.

Interestingly, the value of MCp for the transformed data is very close to
that for untransformed data (1.88). This is due to the fact that, following Pan
and Lee (2010), MCp can be expressed as a function of ρ only; while in Box–
Cox transformation for multivariate normality, the variables are transformed
in such a way that the original correlation structure is retained as much as
possible.

Both of the values of MCp and MCpm are quite high, indicating toward the
satisfactory performance of the process, which contradicts our initial observa-
tion that the process is not capable and hence following Pan and Lee (2010), we
may say that MCp and MCpm over-estimate process capability.

The evaluation of process performance based on several MPCIs, which we
have discussed so far, are based on sample observations and hence are subject
to sampling fluctuations of different degrees. Therefore, instead of considering
the MPCI values computed from the available data as the actual MPCI values,
one should consider them as the estimated MPCI values and the properties of
such estimators should be studied extensively. Pearn, Wang, and Yen (2007) have
precisely done this job for the MPCIs defined by Taam, Subbaiah, and Liddy
(1993).

For the normally transformed data in Table 2, following Pearn, Wang, and
Yen (2007), the value of the plug-in estimator (i.e., the estimator obtained merely
by replacing μ and � by their sample counterparts) of MCp, say M̂Cp = 2.0925
and M̂Cpm = 2.0698. Also, the unbiasedly estimated value of MCp is 1.9181 and
the 95% confidence interval for the value of MCp is [1.2712, 2.9041]. Finally,
similar to Pearn, Wang, and Yen (2007), the following set of hypotheses can
be designed to test whether MCp value is below the conventional threshold,
namely 1: H0 : MCp ≤ 1 against H1 : MCp > 1.

At the 5% level of significance, the critical value of the test is c = 1.316453
and since M̂Cp > c, it is logical to expect that the true value of MCp is greater
than 1 at the 95% confidence level and hence the process can be considered as
capable.
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However, such optimistic conclusion about the process should be taken with
a pinch of salt because, although, the general convention is to consider 1 as the
threshold value for a PCI, it is actually ideal for the univariate ones and to be
more precise, for Cp (refer to Chatterjee and Chakraborty 2014, 2015). Since the
hypothesis testing is designed to test whether the observed MCp value is greater
than a particular value (in this case, 1) or not, it may not be able to predict the
true health of the process, unless a thorough study is carried out regarding the
threshold value of MCp.

The problem of measurement error is one of the major obstacles for the
accurate assessment of process capability. Shishebori and Hamadani (2008) have
made a vivid discussion regarding the impact of gauge measurement errors in
the context of the process capability analysis. In particular, they have considered
MCp for the purpose of mathematical formulation.

Suppose a random vector M denotes the measurement error under multi-
variate setup such that M ∼ Nq(0, �Me). Then, following Montgomery and
Runger (2013), the gauge capability may be defined as

λM = (πχ2
q,0.9973)

q/2 |�Me|1/2[�(q/2 + 1)]−1

Vol. (Modified Tolerance Region)
. (16)

Suppose X and Y are the random vectors denoting the true measures of
the quality characteristics and the measures affected by the measurement error
respectively, such that Y ∼ Nq(μ, �Y = � + �Me).

Shishebori and Hamadani (2008) have proposed a modification of MCp
for a process, for which the concerned measurements are contaminated by
measurement error, as

MCY
p = MCp√

(λM MCp)2 + |�Y |+|�Me||�Y−�Me|
(17)

The authors considered the original dataset given in Table 1 and assumed
that the sample dispersion matrix for the gauge measurement error is �̂Me =(

33.8 0
0 22.5

)
.

For the transformed data in Table 2 and for the same �̂Me, λ̂M = 5458.318
and ˆMCp

Y = 23899.89.
This highly exaggerates the true capability scenario of the process, which is

contributed by the high value of λ̂M triggered by high values of the specifica-
tion limits of the second variable (tensile strength) after transformation into
normality.

3.2.2. Pan and Lee’s (2010) MPCIs
As has already been discussed, Pan and Lee (2010) have observed that, a major
drawback of Taam, Subbaiah, and Liddy’s (1993) MPCIs is the overestimation
of process capability. To overcome this problem, they have proposed a new set
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of MPCIs as follows:

NMCp =
{ |A∗|

|�|
}1/2

, (18)

NMCpm = NMCp

D
, (19)

where A∗ is a q × q matrix, whose (i, j)th element, namely aij is given by aij =
ρij

(
Ui−Li

2
√

χ2
1−α,q

)
×
(

Uj−Lj

2
√

χ2
1−α,q

)
for i, j = 1(1)q.

For the original data in Table 1, the authors computed NMCp = 1.04 and
NMCpm = 1.01 with the 95% confidence interval for both the MPCIs being
[0.63, 1.44] and [0.63, 1.41], respectively. Therefore, the authors considered the
process to be capable.

However, NMCp and NMCpm are defined assuming that the underlying
process distribution is multivariate normal. Therefore, we shall now use the
transformed data in Table 2 for recalculating the NMCp and NMCpm values.

For the transformed data, A∗ =
(

349.5213 4947.914
4947.914 97857.82

)
.

Hence, NMCp = 1.1156 and NMCpm = 1.1035. Also, the 95% confi-
dence interval for both the MPCIs are [0.5596, 1.80] and [0.5865, 1.8392],
respectively.

Therefore, although, Pan and Lee’s (2010) MPCIs still consider the process
to be capable, the amount of over-estimation is clearly more in case of Taam,
Subbaiah, and Liddy’s (1993) MPCIs. In other words, NMCp and NMCpm
perform better than MCp and MCpm, though the result is still not completely
satisfactory.

3.2.3. Goethals and Cho’s (2011) MPCI
Goethals and Cho’s (2011) have proposed the following MPCI, analogous to
Cpm, which takes into account the fact that the loss incurred due to deviation of
the process centering from the target may vary from one quality characteristic
to another:

MCpmc =

⎡⎢⎢⎢⎣
q∏

i=1
(USLi − LSLi)

Vol. (99.73% elliptical process region)

⎤⎥⎥⎥⎦× 1
DG = VR

DG , say (20)

where, Vol. (99.73% elliptical process region) =
{
π χ2

q,0.0027

}q/2 × [�(q/2 +
1)]−1|

q∑
i=1

i∑
j=1

�ij|1/2 and where δii and δij denote, respectively, the loss coeffi-

cients associated with the ith quality characteristic and between the ith and jth
quality characteristics.
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For the transformed data given in Table 2, VR = 5.0378.
Again, following Goethals and Cho (2011), we assume that the impact of

quality loss due to deviation from target is the same for all quality characteristics
and δ11 = δ22 = 0.5 and δ12 = 0. Then DG = 1.0045 and hence MCpmc =
5.015.

Now, following Goethals and Cho (2011), the lower bound for VR is VLB
R =

524.7667 > VR. This implies that the process suffers from high variability and
hence is not performing satisfactorily.

In this context, a drawback of the MPCIs by Goethals and Cho (2011) is that,
the MPCI value is still quite high, even when the process is incapable and this
has been admitted by the authors themselves.

A minor modification in the definition of MCpmc may be suggested in this
regard. As can be observed from Eq. (20), VR is defined analogous to Cp.
Hence, similar to Taam, Subbaiah, and Liddy (1993), the denominator of VR

can be redefined as
{
π χ2

q,0.0027

}q/2 × [�(q/2 + 1)]−1 × |�|1/2. MCpmc will
get modified accordingly. Let us denote the redefined VR and MCpmc as V∗

R
and MC∗

pmc respectively. Then for the transformed data, V∗
R = 1.63226 and

MC∗
pmc = 1.6249.

The advantage of using this modification is that, the values of the MPCIs are
now scaled down without compromising with their performances.

3.2.4. Chen’s (1994) MPCI
Chen (1994) had first used Sultan’s (1986) data in the context of the multivariate
process capability analysis. The author had proposed a ratio-based MPCI which
does not require the multivariate normality assumption and which is applicable
to any type of tolerance zone.

Chen (1994) defined a general version of the tolerance zone as

V = {x ∈ R
q : h(x − T) ≤ r0} (21)

where, r0 > 0 and h(x) is a positive homogeneous function, such that for any
t > 0 and x ∈ R

q, h(tx) = th(x).
Then MCchen

p can be defined as

MCchen
p = r0

r
, (22)

where, r = min{c : P[h(x−T) ≤ c] ≥ 1−α}. Usually, α = 0.0027 is considered.
Applying MCchen

p to the data in Table 2 and considering 3.5σ limits (similar
to Chen (1994)), MCchen

p = 1/0.0925 = 1.108.
Since, according to Chen (1994), MCchen

p is a natural generalization of Cp, the
process is likely to be potentially capable. Clearly, MCchen

p overestimates process
performance.
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3.2.5. Chatterjee and Chakraborty’s (2017) MPCI
Chatterjee and Chakraborty (2011; 2016) have defined a super-structure of
MPCIs for asymmetric specification region as

CM(u, v) = 1
3

√
(d∗ − uG∗)′�−1(d∗ − uG∗)

1 + vG′�−1G
, (23)

where u and v are two nonnegative real numbers
d∗ = (min(dl1, du1), min(dl2, du2), . . . , min(dlq, duq))′, i.e. d∗

i = min(dli, dui),
for i = 1(1)q with du = (du1, du2, . . . , duq)′ and dl = (dl1, dl2, ·, dlq)

′,
dui = Ui − Ti and dli = Ti − Li for i = 1(1)q.

Also, “G” can be defined as G = (a1d1, a2d2, . . . , aqdq)′, where, ai =[
max{μi−Ti

dui
, Ti−μi

dli
}
]

and di = Ui−Li
2 , for i = 1(1)q, such that, A =[

diag(a1, a2, . . . , aq)
]

is a (q × q) diagonal matrix and d = (d1, d2, . . . , dq)′ is a
‘q’ - component vector with di = Ui−Li

2 . Thus, G = [diag(a1, a2, . . . , aq)
]×d =

Ad.
Since CM(u, v) assumes the underlying process distribution to be multivari-

ate normal, for data in Table 2, ĈM(0, 0) = 1.1672, ĈM(1, 0) = 1.1623,
ĈM(0, 1) = 1.1551, and ĈM(1, 1) = 1.1503. Also, following Chatterjee and
Chakraborty (2014), the threshold value of ĈM(0, 0) is computed as 1.1672.
Thus, the process is potentially just capable as the threshold value coincides with
the value of ĈM(0, 0) and this is supported by Figure 2 as well. All the other
MPCIs are found to have values less than the threshold value.

In this context, we may recall that, threshold value is primarily computed for
CM(0, 0) and suggests the minimum value of CM(0, 0) required for a process
to be at least potentially capable. Since the other member indices of a super-
structure like CM(u, v), with u = 1 and v = 0, 1, cannot assume higher value
than CM(0, 0), they are also desired to assume values exceeding the threshold
value.

However, all of ĈM(1, 0), ĈM(0, 1), and ĈM(1, 1) have values lower than the
threshold value. This connotes that the actual capability level of the process is
not satisfactory. Also, the close values of ĈM(0, 0) and ĈM(1, 0)‘ and the fact
that the value of CM(0, 0) coincides with the threshold value, suggest that the
process suffers more due to lack of proximity towards the target, than due to the
prevailing level of dispersion.

This observation is justified by the data itself. The values of Snew varies
between 584.320 and 1745.905 with the target being 1404; while the range of
the values of Hnew is 140 to 214 and the target is 176. The wide range of Snew
values strongly suggests that the process suffers from severe off centeredness
corresponding to this quality characteristic. Although, due to high correlation
between Hnew and Snew, it will not be wise to conclude that the off-centeredness
of the overall process is contributed by Snew only.
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Therefore, the process centering needs immediate attention of the concerned
authority. Moreover, one needs to take a look on the prevailing dispersion
scenario of the process as well. Because, despite the ĈM(1, 0) value being close to
the ĈM(0, 0) value, it is still less than the threshold value, indicating high degree
of dispersion of the quality characteristics.

Thus, CM(u, v) correctly assesses the capability of the process, by concluding
that it is not capable of performing satisfactorily.

3.3. MPCIs based on the concept of proportion of nonconformance

Proportion of nonconformance (PNC) is a parallel approach of assessing process
performance. It gives the proportion of items which do not conform to the
preassigned specification limits, among all the produced items. Hence, bridging
the two concepts, namely PCI and PNC have drawn the attention of many
eminent statisticians since long (refer to Kotz and Johnson 1992-2000; Pearn
and Kotz 2007 and the references there in).

3.3.1. Pearn, Wang, and Yen’s (2006) MPCI
Pearn, Wang, and Yen (2006) have put emphasis on establishing relationship
between MPCIs and the corresponding proportion of nonconformance (PNC).
For this, the authors have defined a multivariate analogue of Spk.

In this context, Boyles (1994) defined Spk, for assessing capability of a uni-
variate process with asymmetric specification limits as

Spk = 1
3
�−1

{
1
2
�(

U − μ

σ
) + 1

2
�(

μ − L
σ

)

}
(24)

such that, for Spk = c and the PNC will be 2{1 − �(3c)}.
Chen, Pearn, and Lin (2003) defined a multivariate analogue of Spk, for the

situation where all the quality characteristics are mutually independent as,

ST
pk = 1

3
�−1

⎧⎨⎩1 +
⎡⎣ q∏

j=1
(2�(3Spkj) − 1)

⎤⎦ /2

⎫⎬⎭ , (25)

where Spkj is the value of Spk for the jth quality Characteristic, for j = 1(1)q.
Since the quality characteristics of a multivariate process are seldom mutually

independent, Pearn, Wang, and Yen (2006) have considered the concept of
principal component analysis to define the following MPCI, which does not
require the independence assumption

TSpk,pc = 1
3
�−1

⎧⎨⎩
⎡⎣ q∏

j=1

(
2�(3Spkj,pc) − 1

)
+ 1

⎤⎦ /2

⎫⎬⎭ (26)

where Spkj,pc denotes the Spk value for the jth PC, j = 1(1)q.
However note that, ideally in Eq. (26), q should be replaced by “v,” the number

of significant PCs.
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The authors have also shown that similar to the case of Spk, for TSpk,pc, PNC =
2
{

1 − �(3TSpk,PC)
}

.
Interestingly, although application of PCA does not require multivariate

normality assumption, since Spk is defined for normally distributed quality char-
acteristics, in general, TSpk,pc requires the multivariate normality assumption of
the process distribution to be fulfilled.

After applying TSpk,pc to the transformed data given in Table 2, it is found that
TSpk,pc = 1.0632 and PNC = 0.0014 which indicates toward the satisfactory
performance of the process and hence TSpk,pc clearly overestimates process
capability.

3.3.2. Gonzalez and Sanchez’s (2009) MPCI
Gonzalez and Sanchez (2009) have proposed univariate and multivariate PCIs
which are directly related to the concept of PNC. For this purpose the authors
have considered PCIs which are based only on process variance. For a process
with “q” correlated quality characteristics, let the tolerance region be defined as

S = {X ∈ Rq : (LSLi ≤ Xi ≤ USLi), i = 1(1)q}.

The authors defined �max as the maximum allowable dispersion, i.e., the disper-
sion related to Xmax, where Xmax has density similar to X with P(Xmax /∈ S) = α.

For a multivariate normal process, the authors have used PCA to obtain PCs
which can be considered as the primary independent factors contributing to the
variability of the process. The authors considered the following two situations:

1. Variability of only one factor changes at a time.
2. Variability of all the factors change simultaneously.

For the first case, let the change in the variability of a single factor, say the
ith factor be incorporated through multiplying the corresponding eigen value
λi by a factor b2

i , i = 1(1)q. Consequently, a new matrix can be defined as
D∗

(i) = diag(λ1, λ2, . . . λi−1, b2
i λi, λi+1, . . . , λq) such that X∗

(i) ∼ Nq(μ, �∗
(i))

with �∗
(i) = CD∗

(i)C
′, where C is the (q × q) matrix of eigen vectors of �. Let

P∗
(i) = P(X∗

(i) � S) and define bmax
i such that P∗

(i) = α.
Then Gonzalez and Sanchez (2009) have defined an MPCI, namely Cn,i ={

|�max
(i) |

|�|
}1/2

= bmax
(i) , where �max

(i) is defined similar to �(i), the only difference

being here b(i) is replaced by �
max
(i) .

The authors have considered the process as capable if Cn,i ≥ 1 for i = 1(1)q.
Therefore, for an incapable process, the responsible factor(s) can be readily
identified by merely observing the values of Cn,i.

For the next case, i.e., for the case of simultaneous change in the values of
all the variables, the authors have assumed same amount of change in all the
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variables and have defined CS
n =

{ |�max|
|�|

} 1
2v = bmax, where bmax is defined such

that P(Xmax ∈ S) = α.
For the multivariate non-normal processes, Gonzalez and Sanchez (2009) have

advocated the use of an independent component analysis (ICA) as according
to them PCA is not applicable to multivariate non-normal processes. However,
following Johnson and Wicharn (2013), PCA is applicable to multivariate non-
normal processes as well.

In the context of Sultan’s transformed data given in Table 2, Cn,1 = bmax
1 =

0.0745 < 1 which indicates toward the incapability of the process. Also the
maximum value of b1 is 0.0745 which is quite small.

Since using Cn,1, the process is found to be incapable, hence there is no point
in computing Cn,2.

3.3.3. Pan and Chen’s (2012) concept of expected loss of quality
Pan and Chen (2012) have established relationships between expected loss
in quality and some popular MPCIs, namely MCpm [vide equation (15)] and
NMCpm [vide Eq. (19)]. In this context, both MCpm and NMCpm are defined as
multivariate analogue of Cpm, which in turn, deals with expected loss in quality
due to deviation from ‘T’ in case of univariate processes.

Suppose C is a q×q p.d. matrix of costs, which represents losses incurred due
to deviation of X from T.According to Pan and Chen (2012), if “C” is a diagonal
matrix, then the corresponding loss function is the sum of “q” single response
quadratic loss functions. On the other hand, if “C” is not a diagonal matrix, then
the off-diagonal elements represent the incremental losses incurred when the ith
and jth pair of quality characteristics are simultaneously off-target.

In this context, following Pignatiello (1993) multivariate quality loss function
can be defined as Q = (X − T)′C(X − T) with

E(Q) = (μ − T)′C(μ − T) + tr(C�). (27)

Note that, for μ = T, E(Q) = tr(C�).
Pan and Chen (2012) have established a relationship between the expected

multivariate quality loss function E(Q) and MCp as

E(Q) = tr(C�) = |C| |M|
MC2

p
×

q∑
j=1

1
|�(j)| , (28)

where, M = diag
(

d2
i

χ2
q,0.9973

)
, χ2

q,0.9973 is the 99.73th percentile of χ2 distribution

with “q” degrees of freedom, di = USLi−LSLi
2 for i = 1(1)q, |�(j)| =

q∏
k=1;k �=j

λk

and λj is the jth eigen value of C�, for j = 1(1)q.
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Similarly, for nominal the best-type quality characteristics the authors have
shown that

E(Q) = kN

[( MCp

MCpm

)2
− 1

]
+ 1

MC2
p

⎛⎝|C| |M|
q∑

j=1

1
|�(j)|

⎞⎠ (29)

where kN = (μ−T)′C(μ−T)

(μ−T)′�−1(μ−T)
.

Finally, for NMCp and NMCpm, defined in Eqs. (18) and (19), respectively, the
authors have shown that

E(Q) = kN

[( NMCp

NMCpm

)2
− 1

]
+ 1

NMC2
p

⎛⎝|C| |A∗|
q∑

j=1

1
|�(j)|

⎞⎠ (30)

While validating their proposed theory. Pan and Chen (2012) have consid-
ered Sultan’s (1986) original dataset (assuming multivariate normality of the
underlying process distribution) and have considered the cost matrix as C =(

0.8 0.89
0.89 1

)
with |C| = 0.0079.

While applying their theory to the transformed data given in Table 2 we
have retained this “C” matrix. Here, |A∗| = 9721538 and KN = 17617.79.
We have already computed N̂MCp = 1.1156 and N̂MCpm = 1.1035. Hence,
E(Q) = 91835.42 which suggests that the expected loss of quality is quite
high, which contradicts the high values of NMCp and NMCpm as both of them
are greater than 1. Thus, NMCp and NMCpm tend to over-estimate process
capability.

Note that Pan and Chen (2012) have computed the value of E(Q) as 462.256
which also seems to be quite high. However, due to unavailability of any
threshold value of E(Q) in their proposed formulations, it is difficult to draw
any concrete conclusion about the degree of quality loss, though apparently, the
process is not maintaining a good health.

3.4. Vector-valued MPCIs

Although process capability indices (both univariate and multivariate) are gen-
erally considered as a single-valued assessment of process performance, some-
times it is difficult to assess the overall capability of a multivariate process
through such conventional single-valued indices. Therefore, a number of vector
valued MPCIs have been defined in the literature to deliver the good (refer to
Kotz and Johnson 1992-2000; Pearn and Kotz 2007 and the references there
in). We shall now revisit a few of those multivariate process capability vectors
(MPCV) in the light of Sultan’s (1986) data.
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3.4.1. Shahriari, Hubele, and Lawrence’s (1995) MPCV
Shahriari, Hubele, and Lawrence (1995) were probably the first to introduce the
concept of multivariate process capability vector (MPCV) in the literature. Their
proposed MPCV consists of three components.

The first component, called CpM , is analogous to Cp of univariate processes.
Suppose a process has “q” correlated quality characteristics and “n” items are
randomly selected from the process. For each of these “n” items, measurements
are taken for all the “q” quality characteristics. Then, CpM can be defined as

CpM =
[

Volume of engineering tolerance
Volume of modified process region

] 1
q

=

⎡⎢⎢⎢⎣
q∏

i=1
(USLi − LSLi)

q∏
i=1

(UPLi − LPLi)

⎤⎥⎥⎥⎦
1
q

, (31)

where UPLi = μi +
√

χ2
q,α |�−1

i |
|�−1| and LPLi = μi −

√
χ2

q,α |�−1
i |

|�−1| ,for i = 1(1)q;
χ2q, α is the upper α quantile of a χ2 distribution with “q” degrees of freedom
associated with the probability contour and �−1

i is obtained by deleting the
ith row and the ith column from �−1, for i = 1(1)q. The observed value of
CpM greater than 1 indicates that the circumscribed modified process region
is smaller than the engineering tolerance region and hence the process is
performing satisfactorily.

Assuming that the center of the engineering specification region is the true
mean of a process (μ0), the second component is defined as

PV = P
[

T2 >
q(n − 1)

n − q
Fq,n−q

]
, (32)

where T2 = n(X − μ0)
′S−1(X − μ0),

and ‘S’ is the sample variance–covariance matrix.
Finally, the third component of the MPCV is

LI =
{
1, if the modified process region is entirely within the tolerance region,
0, Otherwise.

For the data in Table 2, CpM = 1.0562 which indicates toward satisfactory
process performance. Also for these data. PV = 0.7703. Since according to Wang,
Hubele, and Lawrence (2000), value of PV close to 1 indicates that the process
center is close to T, it is logical to expect that the process center is fairly close
to T. However, a threshold value needs to be defined for PV, beyond which the
process centering can be considered to be close to T. This, in turn, will reduce
subjectivity of the index.
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As far as the third component LI is concerned, Pan and Lee (2010), while
dealing with Sultan’s (1986) original dataset, considered LI = 1 as for that data
set, modified process region is completely within the tolerance region.

However, for the transformed data, which we are presently dealing with,
the situation is some what different. For brinell hardness, (LPL1, UPL1) =
(112.9686, 239.4314) is within (USL1, LSL1) = (111.7, 240.3). But for tensile
strength, (LPL2, UPL2) = (403.3929, 2364.851) while (LSL2, USL2) =
(534.145, 2685.945). Hence, the modified process region is not completely
within the tolerance region and therefore by definition, LI = 0. Therefore,
the final form of the MPCV is (1.0562, 0.7703, 0).

Thus, Shahriari, Hubele, and Lawrence’s (1995) MPCV is somewhat self
contradictory in a sense that, while the first two components apparently give
an impression of satisfactory process performance, the third component opines
differently. Hence in general, the process performance should not be considered
as satisfactory.

3.4.2. Shahriari and Abdollahzadeh’s (2009) MPCV
Shahriari and Abdollahzadeh (2009) have taken into account the concepts of
two major MPCIs defined by Taam, Subbaiah, and Liddy (1993) and Shahriari,
Hubele, and Lawrence (1995).

Modifying the first component MCpM of Shahriari, Hubele, and Lawrence’s
(1995) MPCV, similar to that of Taam, Subbaiah, and Liddy’s (1993) MCpm, they
have defined

NMCpM = C′√
χ2

q,0.0027

× D, (33)

where D = [
1 + (μ − T)′�−1(μ − T)

]− 1
2 . Also, C′ = min

i

{
Ci = Ui−Ti

σi
, i =

1(1)q
}

for symmetric specifications and C′ = min
[

min
i

{
Ci = Ui−Ti

σi
, Ti−Li

σi

}
,

i = 1(1)q
]

for asymmetric specification limits.
The authors retained the other two components of Shahriari, Hubele, and

Lawrence’s (1995) MPCV, viz, PV and LI.
After transformation into multivariate normality, the transformed specifica-

tion region becomes asymmetric with respect to the transformed target vector.
Hence following Shahriari and Abdollahzadeh (2009), C′ = 3.0505 and hence
NMCpM = 0.8869. Since Shahriari and Abdollahzadeh (2009) have retained the
other two components, the computed value of their MPCV for the data in Table 2
is [0.8869, 0.7703, 0] and this clearly suggests that the process is not performing
satisfactorily.

Thus, Shahriari and Abdollahzadeh’s (2009) MPCV out performs Shahriari,
Hubele, and Lawrence’s (1995) MPCV in a sense that in case of the for-
mer, there is no case of contradiction between the components of the MPCV.
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Interestingly, the second component in both the MPCVs indicates that the
process centering is fairly close to the target vector, while for Shahriari and
Abdollahzadeh’s (2009) MPCV, the first and the third components suggest that
the modified process region is not completely within the specification region.
Combining these two findings one can conclude that it is the process dispersion
which requires immediate attention of the concerned authority for smooth
running of the process.

3.4.3. Ciupke’s (2015) MPCV
Ciupke (2015) has proposed an MPCV having three components, which
play roles similar to those of the MPCV proposed by Shahriari, Hubele,
and Lawrence (1995). In order to accommodate both normal and non-
normal multivariate distributions and the correlated and uncorrelated data,
Ciupke (2015) has considered “one-sided model’. In this context, one-sided
models address the so-called problem of unknown model accuracy in case of
fitting a regression model.

The MPCV proposed by Ciupke (2015) consists of three components viz.
(CPV , PS and PD). Here, CPV is defined as the ratio of volume of the toler-
ance region (RT) to the volume of the process region (RP). Thus, CPV ={

VOL.(RT)
VOL.(RP)

}1/q × 100% with VOL.(RT) =
q∏

i=1
(USLi − LSLi).

Suppose there are two variables X1 and X2 in the regression model with
X1 being the independent variable. Then in one-sided model, to address the
problem of model accuracy, a pair of functions {x̂2−(x1), x̂2+(x1)} (or simply
{x̂2−, x̂2+}) is used to limit data from the bottom (x̂2−) and from the top (x̂2+).

To compute the volume of the process region, Ciupke (2015) first considered
an independent variable, say Xk, on the basis of the knowledge of the process
and then based on Xk, setup a pair of one-sided models X̂ = ⋃

i∈I
{X̂−

i , X̂+
i }, where

I = {1, 2, · · · , q} such that k � I.
For bivariate processes, VOL.(RP) can be computed analytically. However,

for processes with higher dimension of Ciupke (2015) has suggested the use
of numerical integration and has provided an approximate expression for
VOL.(RP) in this regard. The value of VOL.(RP) is smaller the better with
CPV = 100% indicating that the process region coincides with the tolerance
region.

The second component of the MPCV, namely PS measures the shift of process
median with respect to the target and can be mathematically formulated as

PS = max
i=1(1)q

( |Ti − mi|
Di

)
× 100%, (34)

where mi = median(Xi), i = 1(1)q and Di =
{

Ui − Ti, if mi ≥ Ti, i = 1(1)q
Ti − Li, Otherwise. .
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For a process perfectly centered at T, PS = 0% and on the contrary, if the
process median coincides with one of the specification limits, then PS = 100%.

In this context, usually, for multidimensional processes, the underlying pro-
cess distribution is assumed to be multivariate normal to retain computational
simplicity and hence shift of the process mean vector from T is considered. How-
ever, since Ciupke (2015)’s MPCV accommodates processes with multivariate
non-normal distributions as well, median is considered instead of mean. Note
that, for multivariate normal process, for each individual quality characteristic,
mean coincides with median.

The third component of Ciupke’s (2015) MPCV is ‘PD’ which is defined to
capture process dispersion, as two processes may have the same values of CPV
and PS, while their dispersion scenario may be completely different all together.
Ciupke (2015) has defined PD as

PD = max
i=1(1)q

[
max(X̂+

i ) − T
U − T

,
T − max(X̂−

i )

T − L

]
× 100% (35)

Thus, PD < 100% implies that the process region is within the specification
region while PD > 100% indicates that the process region is not completely
included in the specification region. However, Ciupke (2015) has opined that
for practical purpose, PD value close to 100%, though less than 100% may be
considered as indication towards possible incapability of the process.

Since the MPCV suggested by Ciupke (2015) does not consider any distribu-
tional assumption, it rightly judges the data of Sultan (1986) to correspond to
an incapable process as PD value is quite high (96%) indicating toward the high
degree of process variability.

3.4.4. Polansky’s (2001) MPCI
Polansky (2001) has adopted nonparametric approach, to be more precise kernel
estimation approach, to define a proportion of nonconformance (PNC)-based
MPCI.

For a “q” variate random vector X, characterizing multiple quality charac-
teristics with the corresponding pdf f (x) = f (x1, x2, · · · , xq) and cdf F(x) =
F(x1, x2, · · · , xq) and for a specification set S ⊂ Rq, PNC can be defined in
general as

p = P(X � S) = 1 −
∫

S
f (x)dx (36)

Since “p” is often unknown in practice, Polansky (2001) has adopted non-
parametric kernel estimation procedure to estimate the same.

Let “K” be a continuous “q” variate kernel function satisfying the following
conditions:

1.
∫
Rq

K(x)dx = 1;
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2.
∫
Rq

xK(x)dx = 0;

3.
∫
Rq

xx′K(x)dx = μ2(K)Iq,

where μ2(K) = ∫
Rq

x2
i K(x)dx assumes the same value for all ‘i’ and Iq is an (q×q)

identity matrix. Also, for an (q×q) symmetric positive-definite matrix H, which
is called the band width matrix, let us define

KH(x) = |H|−1/2 × K(H−1/2x) (37)

and the q-variate kernel density estimator of ‘f ’ as

f̂ (x, H) = n−1
n∑

i=1
KH(x − Xi), ∀x ∈ Rq. (38)

Then Polansky (2001) has shown that

p̂(H, S) = 1 −
∫
S

f̂ (x; H)dx = 1 − n−1
n∑

i=1

∫
S

KH(x − Xi)dx. (39)

He has also computed the expression for MSE of p̂(H, S) and its estimator
using a smoothed least-square crossvalidation technique.

Finally, Polansky (2001) defined a nonparametric MPCI, similar to Cp as
ĈM

p = −1
3�−1[p̂(H, S)], although the interpretation of ĈM

p is not identical to
that of Cp.

Interestingly, for Sultan’s (1986) data, Polansky (2001) computed p̂(H, S) =
0.00758 and ĈM

p = 0.81 which shows that the process is not performing
satisfactorily. In this context, recall that Polansky (2001) addressed the problem
from nonparametric view point and hence did not make any distributional
assumption while assessing capability of the process.

According to Polansky (2001), the presence of a point near the boundary of
the rectangular specification region indicates that a significant amount of tail
area of the process distribution may overlap the boundary leading toward poor
process capability value. This is actually the case here, as can be seen in Figures 1
and 2.

However, the hybrid bootstrap confidence interval for p̂(H, S) is [0, 0.1372],
which is fairly wide and according to Polansky(2001), this happens due to small
sample size.

3.5. A consolidated discussion

Following is a brief discussion regarding performance of the MPCIs discussed
so far, from the perspective of the impact of distributional assumptions on the
MPCIs and Sultan’s (1986) transformed data [vide Table 2].



340 M. CHATTERJEE

1. MPCIs proposed by Wang and Chen (1998) over estimate process capability,
even after the data are transformed into multivariate normality.

2. Both the MPCIs given by Tano and Vannman (2013) and Wang and
Du (2000) rightly conclude that the process is incapable.

However, Wang and Du (2000)’s MPCIs are somewhat easy to apply,
since unlike those given by Tano and Vannman (2013), their MPCIs do not
require the so-called standardization of the data and can be applied even if
the data is non-normal.

Interestingly, for the transformed and standardized data, only 92.35 % of
the total variability is explained by the first principal component, while the
remaining 7.65 % of the total variability still remain unexplained.

If the original data (in Table 1) are standardized, as is done by Tano and
Vannman (2013), the explained variation by the first principal component
will be only 91.69 %, i.e., the situation will be even worse.

Also, for Sultans’s (1986) data, after transformation to normality, its
specification becomes asymmetric. Tano and Vannman’s (2013) MPCI does
not take this into consideration. Our proposed modification in this regard,
viz. C′′

p,TV solves this issue.
3. For Taam, Subbaiah, and Liddy’s (1993) MCpm, modified tolerance region is

independent of the correlation structure prevailing in the process and conse-
quently MCpm ends up with over estimating process capability, particularly,
when two or more of the quality characteristics are highly correlated (refer
to Pan and Lee 2010; Shahriari and Abdollahzadeh 2009). Therefore, for
Sultan’s (1986) transformed data, MCpm fails to perform satisfactorily.

To address this problem, Pan and Lee (2010) defined NMCp and NMCpm.
Although these MPCIs perform better than MCp and MCpm, respectively,
they still over-estimate process capability.

4. According to Goethal and Cho (2011), the process is found to be incapable
(due to high variability), though the corresponding MPCI value is still very
high ( MCpmc = 5.015). Our suggested modification scales down the value
(MC∗

pmc = 1.6249) to some extent.
5. Chen’s (1994) MPCI, namely MCchen

p considers the process to be capable
both before and after transformation of Sultan’s (1986) data and hence it is
logical to conclude that MCchen

p over-estimates process capability.
6. The super-structure of MPCIs viz. CM(u, v), for u = 0, 1 and v = 0, 1

proposed by Chatterjee and Chakraborty (2017) considers the process to
be incapable. Availability of the threshold value, in this regard, makes the
decision unambiguous.

7. Among the MPCIs based on the concept of proportion of nonconformance,
Pearn, Wang, and Yen’s (2006) MPCI over-estimates process capability,
while the MPCI defined by Gonzalez and Sanchez (2009) rightly indicates
towards poor capability of the process.
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For the transformed data, the expected loss of quality, computed follow-
ing Pan and Chen (2012), is quite high—which means the process suffered
from poor quality. But due to unavailability of any threshold value of E(Q),
it is difficult to make any precise comment.

8. Both the MPCVs defined by Shahriari, Hubele, and Lawrence (1995) and
Shahriari and Abdollahzadeh (2009) consider the process to be performing
unsatisfactorily.

9. The MPCIs defined by Ciupke (2015) and Polansky (2001) do not require
any distributional assumption and they both considered the process to be of
a poor capability level.

10. Unavailability of mathematical expression for the threshold values of
MCpm, MCpmc and E(Q)—the expected quality loss defined by Pan and
Chen (2012), make it difficult to take clear-cut decision regarding the actual
capability of the process.

The above discussion is summarized in Table 3 to enable easy comparison
between MPCIs discussed in this article.

4. Concluding remark

Sultan’s (1986) data have been used time and again in the literature with
multivariate normality of the underlying process. However, as has been dis-
cussed in detail in Sec. 2, this is not a valid assumption. Polansky has shown
that the performance analysis of the process, which Sultan’s (1986) data rep-
resent, differs a significantly under multivariate normality assumption and
under nonparametric setup. Tano and Vannman (2013) and Shahriari and
Abdollahzadeh (2009) too were skeptical about the validity of multivariate
normality assumption. However, Tano and Vannman (2013) restricted them-
selves to checking univariate normality of the individual quality characteristics,
viz. brinell hardness and tensile strength, instead of carrying out the desired
multivariate normality test.

Based on the discussion in this article, following recommendations can be
made regarding choice of MPCI:

i) MPCIs based on nonparametric approaches, namely Ciupke’s (2015) multi-
variate process capability vector and Polansky’s (2001) kernel-based MPCI,
do not require any distributional assumption and hence are safer to use.
However, these are computation-centric and therefore, the user should be
comfortable with various methods of statistical computing.

ii) While using MPCIs based on parametric approaches, one must ascertain the
underlying process distribution before its actual use. To be more precise,
Wang and Du (2000) and Gonzalez and Sanchez (2009) defined MPCIs
for multivariate normal and non-normal distributions. When applied to
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Table 3. Comparison of the performance of MPCIs discussed in this article
Name of MPCI and
corresponding author(s)

Whether
multivariate
normality is
checked initially

Conclusion Drawn by
respective author(s)
regarding process
performance

Our observation(s) after
transformation of data
to multivariate normality
(If required)

MCp , MCpk ,
MCpm , MCpmk
[Wang and Chen (1998)]

No Capable: MPCI values are
almost equal, implying
Process mean is close to
target

The index Over-estimates
process capability (even
after transforming data to
multivariate normality)

Cp,TV
[Tano and Vannman (2013)]

No Not Capable Our proposed
modification, namely C

′′
p,TV ,

will be applicable here, as
the transformation makes
the specification limits
asymmetric with respect to
target

MCpc
[Wang and Du (2000)]

No —-

[Wang and Du (2000) did
not use MCPC as they

assumed the data to be
multivariate normal]

The data, originally, being
non-normal, MCPC
performs well on this

MCp & MCpm
[Taam, Subbaiah, and
Liddy (1993)]

No Capable The index Over-estimates
process capability (even
after transforming data to
multivariate normality)

NMCp & NMCpm
[Pan and Lee (2010)]

No Capable The index Over-estimates
process capability (even
after transforming data to
multivariate normality)

MCpmc
[Goethals and Cho (2011)]

No Not Capable
Highly off-centered and
high variability

Our proposed scaled-down
version MC∗

pmc performs
better

MCp
[Chen (1994)]

No Capable The index Over-estimates
process capability (even
after transforming data to
multivariate normality)

CM(u, v)
[Chatterjee and
Chakraborty (2014)]

Yes Not capable
highly off centred and high
variability

The index performs well
for multivariate normal
data

TSpk;pc
[Pearn, Wang, and
Yen (2006)]

No Capable The index Over-estimates
process capability (even
after transforming data to
multivariate normality)

Cn,i
[Gonzalez and
Sanchez (2009)]

No
[However can
accommodate

multivariate
non-normal data

as well]

Not capable
[Although this conclusion
was based on multivariate
normality of the data]

The index performs well
(even when the data are
transformed to normality)

E(Q) i.e. expected quality
loss
[Pan and Chen (2012)]

No High quality loss The index performs well
for the transformed data
also; but requires
additional information on
cost of production

[CpM , PV , LI]
[Shahriari, Hubele, and
Lawrence (1995)]

No —-
[Shahriari, Hubele, and

Lawrence (1995) did not
analyze the data

themselves]

First and third component
values are
self-contradictory

(Continued)
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Table 3. Continued
Name of MPCI and
corresponding author(s)

Whether
multivariate
normality is
checked initially

Conclusion drawn by
respective author(s)
regarding process
performance

Our observation(s) after
transformation of data
to multivariate normality
(if required)

[NCpM , PV , LI]
[Shahriari and
Abdollahzadeh (2009)]

No Not capable The index performs well
after transforming the data
to multivariate normality
also

[CPV, PS, PD]
Ciupke (2015)

Does not require
any distributional
assumption

Not Capable The process capability
vector performs
satisfactorily

p̂(H, S)
Polansky (2001)

Does not require
any distributional
assumption

Not Capable The process capability
vector performs
satisfactorily

Sultan’s (1986) original multivariate non-normal data, their MPCIs for non-
normal distributions are found to perform satisfactorily as well. However,
since Wang and Du (2000) and Gonzalez and Sanchez (2009) themselves
did not carry out multivariate normality test and considered the data to be
multivariate normal, they failed to get accurate result.

iii) Among the other parametric MPCIs, those proposed by Chatterjee
and Chakraborty (2014), Shahriari and Abdollahzadeh (2009), and Pan
and Chen (2012) are found to perform satisfactorily for multivariate
normal data. MPCIs given by Tano and Vannman (2013), Goethals and
Cho (2011) also perform well and our proposed modifications over those
MPCIs are seen to make them perform better.

iv) Other MPCIs, discussed in this article, are found to have tendency of over-
estimating process capability and hence should be used cautiously.

As has been discussed in this article, incorrect assumption regarding the
distribution of a process may lead to erroneous decision about the capability of
that process. Therefore, it is utmost necessary to be certain about the underlying
distribution of the process, which the data are representing and select the
MPCI accordingly. The study also revealed the tendency of some MPCIs to
over-estimate process capability. In a nut-shell, one should not decide about
performance of a process merely from an MPCI value—proper exploration of
all the prospective dimensions of the problem is utmost solicited.
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