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Abstract

Processes with smaller the better and larger the better types of quality characteristics and

consequently the unilateral specification limits are very common in manufacturing industries.

However, very little theoretical resources are available in literature, compared to the bilateral

specification limits, for assessing the capability of such processes. In the present article, we

have studied the expressions for the threshold value and relationship with proportion of non-

conformance for some of the process capability indices (PCI) for unilateral specification limits.

We have also explored the distributional aspects along with the uniformly minimum variance

unbiased estimators of those PCIs based on both single sample information as well as the

information obtained from thecorrespondingX − R and X − S control charts. The process

capability control charts for these PCIs have been designed as well for the purpose of the

continuous assessment of the capability of a process over the entire production cycle. Finally,

a numerical example has been discussed in the context of the theory developed in this article.
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Keywords: Control chart, Process capability index,Proportion of non-conformance, Subgroup es-

timate, Threshold value, Uniformly minimum variance unbiased estimator, Unilateral specification

limits.
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1 Introduction

Process Capability Indices (PCI) assess the ability of a process to produce items within pre-

assigned specification limits, viz., upper specification limit (USL) and lower specification limit

(LSL). With the increasing emphasis on quality in world economy, application of various PCIs for

correct assessment of the capability of different processes generated from several diversified fields,

especially manufacturing industries, is increasing day by day.

From the view point of the nature of specification limits, most of the quality characteristics can be

broadly classified into either of the following three classes:

1. The nominal the best (Processes with both USL and LSL), e.g. height, length;

2. The smaller the better (Processes with only USL), e.g. surface roughness, flatness;

3. The larger the better (Processes with only LSL), e.g. tensile strength, compressive strength.

Under the assumption of normality of the concerned quality characteristic (X), the four classi-

cal PCIs for processes with bi-lateral specification limits areCp = U−L
6σ ,Cpk =

d−|μ−M|
3σ ,Cpm =

d

3
√
σ2+(μ−T)2

andCpmk =
d−|μ−M|

3
√
σ2+(μ−T)2

. Here, ‘U’ and ‘L’ denote the USL and LSL respectively;

d = (U − L)/2,M = (U + L)/2, ‘T’ denotes the targeted value of the quality characteristic under

consideration andμ andσ denote the mean and variance of the quality characteristic, such that,

X ∼ N(μ, σ2).

Although most of the PCIs defined so far are meant for nominal the best type of quality char-

acteristics [see Kotz and Johnson (2002) and the references there-in], some very useful research

works are also available in literature for processes with unilateral specification limits. Chatterjee

and Chakraborty (2012) have made an extensive review of these PCIs.

The research works on PCIs carried out in the field of unilateral specification limits are mostly

based on the two indicesCPU =
U−μ
3σ andCPL =

μ−L
3σ due to their computational simplicity. However,

neither ofCPU or CPL incorporate the concept of target (T) in their definitions. Moreover, unlike
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Cp, CPU and CPL do not even measure the potential capability of a process as these PCIs are

expressed as functions of the process centering (μ). Note that, by the term ‘potential capability’ we

mean the capability level, that a process can at most attain given the current dispersion level and

specification scenario.

In this context, the concept of ‘T’, though not always explicitly discussed in the cases the of

larger the better and smaller the better types of quality characteristics, it actually has huge impact

on these types of quality characteristics. For example, let us consider purity of gold as the quality

characteristic of concern. This is a larger the better type of quality characteristic. For making

ornaments, a purity of 91.66%− 95.83% (i.e. 22 carat) is sufficient. Moreover for gold with

higher degree of purity the cost of production is exorbitant and it finds very limited application -

mostly in cutting-edge laboratories for the purpose of sophisticated experimentations of physical

and chemical sciences. Hence, a jeweler should target at producing gold with 91.66%− 95.83%

purity because even if the purity of his gold is higher than the targeted value, the customer will not

be ready to spend extra money on that. Also, gold of higher purity, say 24 carat, tend to be more

fragile than 22 carat gold and hence is not suitable for making ornaments.

We can also consider the example of surface roughness, in this regard, which is a quality

characteristic of smaller the better type. Theoretically, surface roughness should be as small as

possible, though in practice for a surface with the roughness below a certain level will not only

increase the cost of production, but the surface will also become slippery beyond manageability

and hence may not be useful in day to day activities.

Hence, proper setting of target is a key to successful operation of a process. Unfortunately,CPU

andCPL, the most primitive and widely used PCIs for unilateral specifications do not incorporate

the concept of ‘T’ in their definitions.

To address the problems ofCPU andCPL, Vännman (1998) suggested two sets of superstruc-

tures of PCIs for unilateral specification limits. However, these super-structures suffer from a

number of major drawbacks such as, imposing equal amount of importance on deviation ofμ to-
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ACCEPTED MANUSCRIPT

wards either side of ‘T’; inability to have maximum index value on target, obtaining negative value

of the index beforeμ reaches U or L and so on [see Grau (2009) for more details]. Grau (2009)

defined the following superstructures of PCIs which are free from these drawbacks:

CU
p (u, v) =

U−T−uA∗U

3
√
σ2+vA∗U

2

CL
p(u, v) =

T−L−uA∗L

3
√
σ2+vA∗L

2





(1)

where,A∗U = max {(μ − T), T−μ
k }, A∗L = max {μ−T

k , (T − μ)} and ‘u’ and ‘v’ are two non-negative

parameters. Also, the value ofk (> 1) quantifies the risk of deviation from the target in the direction

opposite to the available specification limit with respect to ‘T’. Note thatCU
p (0,0) = CU

p ,C
U
p (1,0) =

CU
pk,C

U
p (0,1) = CU

pm andCU
p (1,1) = CU

pmkare defined analogous toCp,Cpk,Cpm andCpmk. Similar is

the case forCL
p(u, v). To avoid notational ambiguity, let us defineCI

p(u, v) which stands forCU
p (u, v)

andCL
p(u, v) depending on the available specification limit. Here the additional tuning parameters

viz., u and v are introduced to unify the PCIsCI
p, CI

pk, CI
pm andCI

pmk for ease of representation.

Note that,CI
p(u, v) is not a new class of PCIs for unilateral specification limits. It only works

as an indicator of whetherCU
p (u,b) or CL

p(u, v) will be appropriate to use, depending upon the

availability of either USL or LSL respectively. Thus,

CI
p(u, v) =





CU
p (u, v), when only USL is available

CL
p(u, v), when only LSL is available

(2)

We shall eventually observe that, since by definition, the mathematical formulations ofCU
p (u, v)

andCL
p(u, v) get changed only according to the availability of either USL or LSL, their statistical

properties are similar. Therefore, we shall study the properties ofCI
p(u, v), in general and discuss

discuss about individual features ofCU
p (u, v) andCL

p(u, v), wherever applicable.

Grau (2009) did not provide any formulation of ‘k’ and this makes the choice of ‘k’ rather sub-

jective leaving room for favourable manipulation by the concerned stake holders. Latter, Chatterjee
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and Chakraborty (2012) have proposed a formulation of ‘k’ as

k =
Selling Price PerItem

ALP
(3)

where, ALP denotes the average loss of profit per item due to deviation from ‘T’ towards the

opposite side of the existing specification limit. Grau (2009) has also studied the distributional

properties and expectations of the plug-in estimators of the member indices ofCI
p(u, v). However,

these expressions are complicated in nature and hence are unsuitable for potential future applica-

tions.

Moreover, since a process is a continuous flow of activities; while assessing its capability, often

it is not justifiable to draw conclusion based on single sample information only. Even the conven-

tional multiple sample estimation procedure for PCIs has a general tendency of smoothing out

some important fluctuations in a process. Moreover, stability of a process does not always ensure

its consistent capability over the period of time [Chatterjee and Chakraborty (2013b)]. Control

charts, by definition, usually do not take into account the concepts like specification limits and tar-

get, which are of great importance from the view point of the acceptability of the produced items

among the end users. As a result, even if, by using suitable control chart(s), a process is found to

be stable, it may not imply that the process is performing satisfactorily. The process may suffer

from decreased proximity of the process centering from the target or increased level of process

variability with respect to the specification limits. These incidences are likely to be overlooked by

the usual control charts for which the control limits are set based on the observed data and hence

for a process, stability may indeed be attained - but at far the from satisfactory level. Thus, for

a process with inconsistent capability, the PCI value based on the conventional single or multiple

sample information may not reflect the actual process capability and they tend to smooth-out some

important fluctuations in the observed values of the concerned quality characteristic [Chatterjee

and Chakraborty (2013b)]. A possible solution to these problems is the use of process capability

control chart of the concerned PCI based on the information from thecorrespondingX − R and
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X − S charts, which were already used for checking stability of the said process [refer Spiring

(1995) and Chatterjee and Chakraborty (2013b)]. Morita et al. (2009) and Carot et al. (2013)

have designed process capability control chart for the PCIsCpm andCpmk. Vännman and Albing

also argued for using process capability plots for assessing capability of a process having unilateral

specification limits.

In the present article, we have proposed more tractable forms of the statistical distributions

and the expectations of these plug-in estimators. In particular, we have computed the minimum

variance unbiased estimator (UMVUE) ofCI
pk based on single sample information. We have also

computed the threshold value ofCI
p and have established exact relationship betweenCI

pk and the

proportion of non-conformance (PNC). These concepts have immense importance from the in-

terpretability as well as application point of view of a PCI, but had hardly been explored in the

literature.

Moreover, going by the analogy of Spiring (1995) and Chatterjee and Chakraborty (2013b),

we have studied the distributional and inferential properties of the member indices ofCU
p (u, v) and

CL
p(u, v) based on information from thecorrespondingX − R andX − S charts and have designed

the concerned process capability control charts as well. Through some numerical examples, we

have also reinstated the importance of using such process capability control charts to have a vivid

picture of the process performance throughout the entire production cycle.

In the following section, we have enlisted the notations which are used throughout this article.

Section 3 contains some important statistical properties ofCI
p(u, v), viz., threshold value ofCI

p and

the relationship betweenCI
p, CI

pk and the proportion of non-conformance (PNC). In section 4, the

distributional aspects along with the expressions for the expectations of the plug-in estimators of

some member indices ofCI
p(u, v), based on the single sample information, are discussed while

section 5 deals with the same distributional aspects of these PCIs based on information from the

correspondingX − R and X − S charts. Their process capability control charts are designed in

section 6 followed by a numerical example in section 7. Finally, the article concludes in section 8
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ACCEPTED MANUSCRIPT

with a general note on the topics discussed in this paper.

2 List of Notations

1. U: Upper specification limit (USL);

2. L: Lower specification limit (LSL);

3. d = U−L
2 ;

4. M = U+L
2 ;

5. ‘T’ is the target;

6. X is a random variable characterizing the quality characteristic under consideration;

7. X = 1
n

n∑

i=1
Xi;

8. S2 = 1
n−1

n∑

i=1
(Xi − X)2;

9. k(> 1) quantifies the risk of deviation from ‘T’ in the direction opposite to the available

specification limit with respect to ‘T’;

10. A∗U = max
{
(μ − T), T−μ

k

}
;

11. A∗L = max
{
μ−T

k , (T − μ)
}
;

12. ‘u’ and ‘v’ are two non-negative parameters;

13. DU = U − T;

14. DL = T − L;

15. d∗ = min(DU ,DL);
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ACCEPTED MANUSCRIPT

16. k∗ = max
(

DU

DL
, DL

DU

)
;

17. RU =
μ−T
DU

;

18. RL =
T−μ
DL

;

19. αU = max[μ−T
U−T ,

T−μ
k(U−T) ];

20. δU =
(U−T)

√
n

σ
;

21. δL =
(T−L)

√
n

σ
;

22. δ∗U =
μ−T
σ
× IU

k ;

23. IU
k =





1, for μ > T

−1
k , for μ < T

;

24. δ∗L =
μ−T
σ
× I L

k ;

25. I L
k =





−1
k , for μ>T

1, for μ < T
;

26. δ1 = n
(
μ−T
σ

)2
;

27. χ∗U(n)2
= 1

n−1χ
2
n−1 +

1
nIU2

k χ
2
1(δ1) andδ1 = n(μ−T

σ
)2;

28. χ∗L(n)2
= 1

n−1χ
2
n−1 +

1
nI L2

k χ
2
1(δ1);

29. bn−1 =

√
2

n−1Γ( n−1
2 )

Γ( n−2
2 ) ;

30. d∗2 =
√

d2
2 +

d2
3

m ;

31. ν = 1

−2+2

√

1+
2d2

3
md22

;

32. δ(N)
U =

√
N(U−T)
σ

;

33. δ(N)
L =

√
N(T−L)
σ

.
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3 Some Useful Properties ofCI
p(u, v)

The very success of a process capability index lies in its acceptability among the practitioners.

Hence, a PCI should be easy to formulate and unambiguously interpretable. Exact relationship

with proportion of non-conformance and expression for the threshold value of the concerned PCI

are two of the most important properties from the view point of the applicability of a PCI in

practice.

3.1 Relationship of Proportion of Non-conformance withCI
p and CI

pk

The probability of producing an item, having the corresponding quality characteristic value beyond

the pre-assigned specification limit(s), is known as the proportion of non-conformance (PNC).

Thus, PNC or equivalently, the process yield (= 1 − PNC) is one of the major factors for mea-

suring process performance. Since, PNC and PCI are the two parallel approaches of assessing

the performance of a process, having exact relationship with PNC is considered to be an added

advantage for a PCI.

SupposePU
NC denotes the probability of producing non-conforming items when the process is

centered at ‘T’, i.e.μ = T and only USL exists. Similarly,PL
NC is defined for the situation when

only LSL exists. Then,PU
NC = Φ(−3CU

p ) andPL
NC = Φ(−3CL

p) depending upon the availability of

USL or LSL respectively [Grau (2009)].

However, the expressions forPU
NC and PL

NC are based on the assumption that the process is

centered at ‘T’. Thus, whenμ , T, PU
NC andPL

NC do not measure the actual PNC.

SinceCU
pk andCL

pk are defined analogous to the yield based indexCpk, it is logical to expect that

there would be some exact relationship betweenCU
pk or CL

p(u, v) and the PNC, whenμ , T. Let us

denote this PNC asPE(U)
NC or PE(L)

NC , depending upon the availability of USL and LSL respectively.

This relationship is established through the following theorem:
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Theorem 1:

PE(U)
NC =





1− Φ
[
3{CU

pk − (k+1
k )RUCU

p }
]

for μ < T

1− Φ[3CU
pk], for μ > T

(4)

where,RU =
μ−T
DU

andDU = U − T.

Proof: Before going into the actual proof of the theorem, let us consider a virtual LSL to

a process having a quality characteristic of smaller the better type, such thatDL = kDU , where,

DL = T − L. Under such circumstances, Grau (2009) has shown that

CU
p (u, v) = C′′p (u,

4v
(1+ k)2

) (5)

Here, C′′p (u, v) denotes a superstructure of PCIs for asymmetric specification limits [Chen and

Pearn (2001)].

In fact, since by definitionk > 1, introduction of the virtual LSL converts the unilateral specifica-

tion limit to asymmetric specification limits. While exploring the relationship between PNC and

C
′′

pk, the PCI (analogous toCpk) for asymmetric specification limits , Chatterjee and Chakraborty

(2013a) have considered four different situations based on various possible positions of ‘T’ with

respect to U, L andμ. Among these, only two are relevant for smaller the better type quality

characteristic, viz.,μ < T andμ > T (since here,d∗ = min(DU ,DL) = DU always).

Now, let us definek∗ = max(DU

DL
, DL

DU
) = k andRL =

T−μ
DL

=
T−μ
kDU

. Also, from equation (5),

CU
pk = CU

p (1,0) = C
′′

p(1,0) = C
′′

pk andCU
p = C

′′

p. Thus,PE(U)
NC can be formulated as

PE(U)
NC = 1− P(X < U |X ∼ N(μ, σ2))

= 1− Φ
[DU

σ
(1− RU)

]
(6)

Case I:μ < T Here, following Chatterjee and Chakraborty (2013a), we have,

PE(U)
NC = 1− Φ

[DU

σ
(1− RU)

]

= 1− Φ
{
3[C

′′

pk + (1+ k∗) RLC
′′

p]
}

= 1− Φ

{

3 [CU
pk −

(
1+ k

k

)

RUCU
p ]

}

(7)
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Case II:μ > T Here, DU

σ
(1 − RU) = 3C

′′

pk = 3CU
pk, [from equation (5) and Chatterjee and

Chakraborty (2013a)]. Hence, from equation (6),

PE(U)
NC = 1− Φ[3CU

pk] (8)

Thus, combining equations (7) and (8) Theorem 1 follows.

Note that for a quality characteristic of smaller the better type, the situation viz.,μ < T is more

desirable than that ofμ > T as the former signifies lesser value of the quality characteristic on

an average. Since ‘Φ’ is an increasing function, it is easy to see thatPE(U)
NC |μ<T < PE(U)

NC |μ>T which

should ideally be the case and this validates our formulation. However, forμ < T, PU
NC does not

ensure providing minimum observable PNC. In factμ < T implies that on an average, values of the

quality characteristics are less than ‘T’ indicating increase in the overall quality level and hence,

this type of deviation from ‘T’ can not be considered as added contribution to PNC, for smaller the

better type of quality characteristic. Moreover, although the computations involved in theorem 1

was based on the virtual LSL, the final form of the exact relationship betweenPE(U)
NC andCU

pk is free

from that and this is highly desirable.

Similarly, it can be shown that for quality characteristics of larger the better type,PE(L)
NC can be

formulated as

PE(L)
NC =





1− Φ[3CL
pk] for μ < T

1− Φ
[
3{CL

pk − (k+1
k )RLCL

p}
]
, for μ > T

(9)

with PE(L)
NC |μ>T < PE(L)

NC |μ<T as desired. Also, forμ > T, PL
NC does not ensure providing minimum

observable PNC.

Thus, similar to the cases of both the symmetric and asymmetric specification limits, for uni-

lateral specification limits also, whenμ , T, the PNC can be expressed in terms ofCU
p andCU

pk.

In this context, forμ , T, Grau (2012) has developed an expression for the upper bound

of PNC; while our formulation provides the exact relationship. Moreover, althoughCU
p (u, v) can
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be expressed in terms ofC
′′

p(u, v) [refer Grau (2009)]; while computingPE(U)
NC , one needs to con-

sider only the situations where the values of the quality characteristic exceeds USL as LSL is not

available here. Hence direct application of the formulation of PNC in terms ofC
′′

p andC
′′

pk [refer

Chatterjee and Chakraborty (2013a)] is not appropriate here. In fact, the said formulation will give

the upper bound of the PNC for unilateral specification limits similar to Grau’s (2012) formulation,

whenμ , T. For example, Grau (2012) has calculated the upper bound of NCPPM forCU
pk = 1 as

1350 and this is exactly the same value of NCPPM forC
′′

pk = 1 [refer Chatterjee and Chakraborty

(2013a)]. This argument is valid for quality characteristics of larger the better type as well.

Result1: PE(U)
NC ↑ k, for μ < T and for fixedCU

p andCU
pk values.

Proof: SinceCU
pk is independent of ‘k’ forμ > T, we have to consider the case ofμ < T only.

Here,RU =
μ−T
DU
< 0. Also, by definition,k > 1. Hence, 3

[
CU

pk − (1+ 1
k)RUCU

p

]
↓ k. Thus, ‘Φ’

being an increasing function, from equation (7) result 1 follows. Similar result also holds good for

PE(L)
NC with μ > T.

The result can be logically explained from the definition of ‘k’ as well. Since in a competitive

market, selling price can not be changed easily, the numerator of equation (3) is assumed to be fixed

and hence ‘k’ increases in inverse proportion with the average loss of profit due to deviation from

T towards left (when USL is available). Now, one possible reason for decrease in the denominator

of equation (3) may be that, for most of the sample observations, the values of the concerned

quality characteristic deviate from target towards USL increasing the possibility of producing non-

conforming items. This gives a logical foundation to result 1.

From Result 1,RUCp < 0 for μ < T. Now, for a unilateral process with USL, it is always

desirable to haveDU > (T − μ) and hence,−1 < RUCp < 0. In fact,RUCp should be as close to

0 as possible. Also, often for a process withμ , T, the PNC values are found to be very small

and hence they are expressed in terms of the non-conforming parts per million (NCPPME) which

is 106 times the PNC. In Table 1, theNCPPME values are tabulated for different values of ‘k’ and
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CU
pk (or, CL

pk) whenμ > T (or, μ < T).

TABLE 1 SHOULD BE ABOUT HERE

Also, Table 2 gives theNCPPME values for different values of ‘k’ andCU
pk (or,CL

pk) whenμ < T

(or, μ > T) with RUCp = −0.3. For other values ofRUCp, the corresponding values ofNCPPME

can be computed using the equation (4) or (9) depending upon the available specification limit.

TABLE 2 SHOULD BE ABOUT HERE

Table 2 shows that for fixed ‘k’,NCPPME decreases with the increase in theCI
pk value. This

is quite logical as higher the value ofCI
pk, better is the process. Moreover, for any fixed ‘k’, the

value ofNCPPME corresponding to eachCI
pk in Table 2 is much less than theNCPPME value for

the same value ofCI
pk tabulated in Table 1. This is similar to our observation in Theorem 1.

3.2 Threshold Value ofCI
p

The concept of threshold value plays a prime role in the context of the interpretation and practical

application of a PCI. A threshold value is such a value of a PCI that a process with the PCI value

higher than this threshold value is considered to be capable; while for an incapable process, the

observed PCI value is less than the threshold value. Following the general convention, the threshold

value is generally computed for the potential PCI; since a process which is not even potentially

capable will, in all likelihood, have very poor capability level under the given specification criteria.

Unlike CPU (or, CPL), CU
p (or, CL

p) measures the potential capability of a process as, by definition,

it is independent ofμ. Hence, the expressions for the threshold values ofCU
p andCL

p need to be

explored here.

Going by the usual convention, the threshold value ofCU
p should be 1. However, if similar

logic, as in case ofCp is used, then, the threshold value ofCU
p should be that value for which the
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voice of the customer (measured by specification spread) coincides with the voice of the process

(reflected by the process variation).

Let us first consider a quality characteristic of smaller the better type. Also, for ease of represen-

tation, we consider, for the time being, existence of a LSL withDL = kDU . This is similar to our

discussion in section 3.1. Here, the specification spread will beU −L = (k+1)(U −T). Also, since

we have already assumed that the quality characteristic under consideration followsN(μ, σ2), the

process spread will be 6σ. Thus,

Voice of theCustomer
Voice of the Process

=

(
1+ k

2

)

CU
p

Similar is the case forCL
p as well. Hence, the threshold value ofCI

p will be

CI (T)
p =

2
1+ k

(10)

The threshold values ofCI
p for various values of ‘k’ are tabulated in Table 3.

TABLE 3 SHOULD BE ABOUT HERE

The following observations can be made regarding these threshold values:

1. Unlike the case of symmetric specification limits and contradicting the usual convention, for

unilateral specification limits, the threshold value is not unique; rather it varies as a function

of ‘k’.

2. CI (T)
p ↓ k with CI (T)

p → 1 for k→ 1 and fork→ ∞, CI (T)
p → 0.

3. Fork = 1 we haveDU = DL which indicates symmetry of specification limits with respect to

T and thenCI (T)
p = 1, the value which is mostly considered as the threshold value in practice.

4. Since by definitionk > 1, CI (T)
p < 1. Thus considering 1 as the threshold value ofCI (T)

p

underestimates the potential capability of a process. In this context, while proposing mini-

mum desirable (threshold) values of the PCIs for various situations for both the bi-lateral and
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unilateral specification limits, Montgomery (2010) recommended lower threshold values for

processes with unilateral specification limits, compared to those with bi-lateral specification

limits, irrespective of the nature of the process.

5. Similar story is revealed from the viewpoint of proportion of non-conformance as well. The

PNC corresponding toCp = 1 is 0.0027%, while PNC corresponding toCI
p = 1 is 0.00135%.

Thus, suppose for a process withμ , T, the PNC isp′ such that 0.0000135< p′ < 0.000027.

Then consideration ofCI
p = 1 as the threshold value will consider the process to be poten-

tially incapable, while the actual situation may not be that bad.

4 Distributional Properties of the Plug-in Estimators ofCI
p(u, v)

for u = 0,1 and v = 0,1 Based on Single Sample Information

Although PCIs are primarily defined for application in industries, their definitions involve the

parameters of the concerned quality characteristics and hence are often unobservable. The common

industrial practice is to calculate the values of the plug-in estimators of the actual PCIs based on the

available sample information and to decide about the capability level of the said process based on

that value. So the statistical properties of the plug-in estimators of PCIs need to be studied. Grau

(2009) have studied the expressions for the underlying statistical distributions and the expectations

of the plug-in estimators ofCI
p(u, v) for u = 0,1 andv = 0,1. However, his formulations (in

particular for the PCIs excludingCI
p) are a bit complicated and hence not suitable for prospective

future applications. Here, our objective is to explore more tractable forms of the said distributions

and expectations.

Suppose a sample of size ‘n’ is drawn from a process andXi is the value of the concerned quality

characteristic for theith sample observation, for i= 1(1)n such thatXi ∼ N(μ, σ2). From equation

16
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(1), CU
pk can be defined as

CU
pk = (1− αU)CU

p

=





CPU, for μ ≥ T

(k+1
k )CU

p −
1
kCPU, for μ < T

(11)

where,αU = max[μ−T
U−T ,

T−μ
k(U−T) ] andCU

p = U−T
3σ . Accordingly, the corresponding plug-in (natural)

estimator will be,

ĈU
pk =





ĈPU, for μ ≥ T

(k+1
k )ĈU

p −
1
kĈPU, for μ < T

(12)

with ĈU
p = U−T

3S andĈPU = U−X
3S , where,X = 1

n

n∑

i=1
Xi andS2 = 1

n−1

n∑

i=1
(Xi − X)2 are the sample mean

and variance for the said quality characteristic respectively.

The statistical distribution of̂CU
pk and the expression for the corresponding unbiased estimator are

derived in the following theorem:

Theorem2:

ĈU
pk ∼





1
3
√

n
tn−1(δU), for μ ≥ T

(k+1)(U−T)
√

n−1
3kσ × χ−1

n−1 −
1

3k
√

n
× tn−1(δU), for μ < T

(13)

where,tn−1(δU) denotes the non-central t-distribution with (n− 1) degrees of freedom with the cor-

responding non-centrality parameterδU =
(U−T)

√
n

σ
andχ−1

n−1 denotes inverse central chi-distribution

with (n− 1) degrees of freedom.

Also,

C̃U
pk =





bn−1 ×
(

U−X
3S

)
, for μ ≥ T

bn−1 ×
[

(k+1)(U−T)
3kS − U−X

3kS

]
, for μ < T

(14)

is the UMVUE ofCU
pk corresponding to the plug-in estimatorĈU

pk, given in equation (12).
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Proof: For μ ≥ T, ĈU
pk = ĈPU for which expressions for the underlying statistical distribu-

tion and the UMVUE are already available in literature [see Chatterjee and Chakraborty (2012)].

Therefore, only forμ < T, the distribution and UMVUE of̂CU
pk need to be explored. Now,

ĈU
p ∼

(U−T)
√

n−1
3σ χ−1

n−1 [Grau (2009)]. Thus, from equations (11) and (12) and using the distribu-

tions ofĈU
p andĈPU, the distribution of̂CU

pk is obtained as in (13).

Again, from (12), whenμ < T,

E[ĈU
pk] =

(
k+ 1

k

)

E(ĈU
p ) −

1
k

E(ĈPU)

=

√
n− 1

2
×
Γ
(

n−2
2

)

Γ
(

n−1
2

)CU
pk

Thus, whenμ < T, C̃U
pk = bn−1ĈU

pk = bn−1

[(
k+1

k

)
ĈU

p −
1
kĈPU

]
is an unbiased estimator ofCU

pk.

Hence, combining the two situations, viz.,μ ≥ T andμ < T, (14) indeed gives the expression for

an unbiased estimator ofCU
pk.

Observe that under the assumption of normality of the quality characteristic,(X,S2) are jointly

complete sufficient statistics for (μ, σ2). Thus, using Rao - Blackwell theorem [see Casella and

Berger (2007)],̃CU
pk is the UMVUE ofCU

pk and this completes the proof of Theorem 2.

Interestingly, the property ofCU
pk, that it is independent of ‘k’ for shift ofμ from ‘T’ towards the

existing specification limit (here USL), is also retained in these expressions for the distribution and

the plug-in estimator ofCU
pk.

Similarly, for quality characteristics of higher the better type,

ĈL
pk ∼





(k+1)(T−L)
√

n−1
3kσ × χ−1

n−1 −
1

3k
√

n
× tn−1(δL), for μ ≥ T

1
3
√

n
tn−1(δL), for μ < T

where,δL =
√

n(T−L)
σ

. Also,

C̃L
pk =





bn−1

[
(k+1)(T−L)

3kS − X−L
3kS

]
, for μ ≥ T

bn−1 ×
[

X−L
3S

]
, for μ < T

18
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Pu
rd

ue
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

7:
16

 2
5 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT

is the UMVUE ofCL
pk corresponding to the plug-in estimatorĈL

pk.

Let us now re-defineCU
pm asCU

pm = (1+ δ∗
2

U )−
1
2 ×CU

p , where,δ∗U =
μ−T
σ
× IU

k . Then,

ĈU
pm ∼

U − T
3σ

×
[
χ∗U(n)

]−1
(15)

Similarly, for CL
pm = (1+ δ∗

2

L )−
1
2 ×CL

p, we have,̂CL
pm ∼

T−L
3σ ×

[
χ∗L(n)

]−1
, where,δ∗L =

μ−T
σ
× I L

k .

However, the linear combination of a central and a non-central chi-square distribution do not

follow any standard distribution an hence,χ∗U(n)2
andχ∗L(n)2

can not be simplified further.

Again, from equation (1) and following Grau (2009),CU
pmk can be defined asCU

pmk = CU
pm−αU×

CU
pm. The corresponding plug-in estimator viz.,ĈU

pmk may be obtained by replacingμ andσ by X

and S respectively, in the definition ofCU
pmk. The following theorem gives the distribution of̂CU

pmk.

Theorem 3: ĈU
pmk ∼

U−T
3σ ×

[
χ∗U(n)

]−1
− 1

3
√

1+ n

IU
2

k

×F1,n−1(δ1)
, where,F1,n−1(δ1) denotes the non-

central F distribution with 1 and (n - 1) degrees of freedom andδ1 is the corresponding non-

centrality parameter.

Proof: Case I (μ ≥ T): Here,

ĈU
pmk =

U − T

3
√

S2 + (X − T)2

−
1

3
√

1+ ( S
X−T

)2

=
U − T

3σ
×

1
√

(S
σ
)2 + ( X−T

σ
)2

−
1

3
√

1+
(

S
X−T

)2
(16)

Now, (S
σ
)2+ ( X−T

σ
)2 ∼ 1

n−1χ
2
n−1+

1
nχ

2
1(δ1) and ( S

X−T
)2 ∼ nF1,n−1(δ1), since,S andX are independently

distributed. Hence, from equation (16),

ĈU
pmk∼

U − T
3σ

×
1

√
1

n−1χ
2
n−1 +

1
nχ

2
1(δ1)

−
1

3
√

1+ nF1,n−1(δ1)
(17)

Case II (μ < T): Here,

ĈU
pmk =

U − T
3σ

×
1

√
(S
σ
)2 + 1

k2 ( X−T
σ

)2

−
1

3
√

1+ k2
(

S
X−T

)2
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and hence,

ĈU
pmk∼

U − T

3σ
√

1
n−1χ

2
n−1 +

1
nk2χ

2
1(δ1)

−
1

3
√

1+ nk2F1,n−1(δ1)
(18)

Combining equations (17) and (18), theorem 3 follows.

Similarly, ĈL
pmk∼

T−L

3σ

√

1
n−1 χ

2
n−1+

I L
2

k
n χ2

1(δ1)

− 1

3
√

1+ n

IL
2

k

F1,n−1(δ1)
.

5 Distributions and Expectations of the Plug-in Estimators of

CI
p(u, v) for u = 0,1 and v = 0,1 Based on Control Chart

Information

Suppose from a process, ‘m’ samples are drawn each of which is of size ‘n’. So the total number

of sample observations isN = mn. Let Xi j be the measured value of the quality characteristic

corresponding to thejth observation of theith sample, fori = 1(1)m, j = 1(1)n, such thatXi j ∼

N(μ, σ2). Also suppose, before computing the values of thePCIs, X − R or X − S charts are

used to check and establish stability of the process. Then, following Spiring’s (1995) approach,

while defining the plug-in estimators of the member indices ofCI
p(u, v), the parameters of the

quality characteristics, viz.,μ andσ, should be replaced respectivelyby X andR/d2 (if X − R

chart information is used) orby X and S/c4 (if X − S chart information is used) in equation

(1), where,c4 andd2 are two well known constants of control charts. Such estimation policy is

more economical than the classical one, in a sense that in the classical estimation, while checking

stability of a process, samples are drawn from it to construct suitable control chart. These control

charts provide a set of estimates forμ andσ. However, these estimates are never used in the

subsequent stages of the performance assessment of the process. Rather, while computing PCIs,

fresh samples are drawn for estimating the same parameters. This increases the sampling cost

especially for processes requiring destructive tests or where the cost of production is exorbitant

20
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Pu
rd

ue
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

7:
16

 2
5 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT

[Chatterjee and Chakraborty (2013b)].

5.1 Distributions and Expectations ofCI
p(u, v) for u = 0,1 and v = 0,1 Based

on Information fr om X − RCharts

From equation (1),CU
p can be defined asCU

p = (U − T)/3σ and following Spiring (1995), the

corresponding plug-in estimator, based on informationfrom X −RCharts, will beĈU(R)
p =

d2(U−T)
3R

.

Woodall and Montgomery (2000) have shownthat R
σ
∼ d∗2

χν√
ν
, where,d∗2 =

√
d2

2 +
d2

3
m and

ν = 1

−2+2

√

1+
2d2

3
md22

, [Kuo (2010)]. Thus,

ĈU(R)
p ∼

d2(U − T)
√
ν

3d∗2σ
× χ−1

ν (19)

Also, C̃U(R)
p = bν

d∗2
d2

ĈU(R)
p is the unbiased estimator ofCU

p basedon X − R chart information, where,

bν =
√

2
ν Γ( ν2)

Γ( ν−1
2 ) . Similarly, ĈL(R)

p ∼ d2(T−L)
√
ν

3d∗2σ
× χ−1

ν andC̃L(R)
p = bν

d∗2
d2

ĈL(R)
p is the unbiased estimator of

CL
p, where,ĈL(R)

p =
d2(T−L)

3R
.

We now derive the expressions for the underlying statistical distributions as well as the ex-

pectations of the plug-in estimators ofCU
pk andCL

pk with informationfrom X − R chart. Note that

corresponding to the definition ofCU
pk, as given in equation (11), the expression for the plug-in

estimator ofCU
pk, based on the information from the respective X − Rcharts will be,

ĈU(R)
pk =





Ĉ(R)
PU, for μ ≥ T

(k+1
k )ĈU(R)

p − 1
kĈ(R)

PU, for μ < T
(20)

The expression for the statistical distribution ofĈ(R)
PU is derived in theorem 4 below.

Theorem 4:

ĈU(R)
pk ∼





d2

3d∗2
√

N
× tν(δ

(N)
U ), for μ ≥ T

[
(k+1)(U−T)d2

√
ν

kd∗2σ

]
× χ−1

ν −
d2

3d∗2k
√

N
× tν(δ

(N)
U ), for μ < T

(21)
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Also, C̃U(R)
pk =

d∗2
d2
× bν × ĈU(R)

pk is an unbiased estimator ofCU
pk.

Proof: Case I (μ ≥ T): Here,ĈU(R)
pk = Ĉ(R)

PU =
d2(U−X)

3R
[from equation (20)]. Hence, following

Chatterjee and Chakraborty (2013b),

ĈU(R)
pk = Ĉ(R)

PU ∼
d2

3d∗2
√

N
× tν(δ

(N)
U ) (22)

andC̃U(R)
pk =

d∗2
d2
× bν × ĈU(R)

pk is an unbiased estimator ofCU
pk when information gatheredfrom X−R

chart is used for parameter estimation.

Case II (μ < T): Here, from equations (19), (20) and (22),

ĈU(R)
pk ∼

[
(k+ 1)(U − T)d2

√
ν

3kd∗2σ

]

× χ−1
ν −

d2

3d∗2k
√

N
tν(δ

(N)
U ) (23)

Thus, combining equations (22) and (23), the expression for the underlying statistical distribution

of ĈU(R)
pk , as given in equation (21) can be obtained.

Again, forμ < T,

E[ĈU(R)
pk ] =

d2

d∗2
× b−1

ν

[(
k+ 1

k

)

×CU
p −

1
k
CPU

]

=
d2

d∗2
× b−1

ν ×CU
pk

Thus,C̃U(R)
pk =

d∗2
d2
× bν × ĈU(R)

pk is an unbiased estimator ofCU
pk.

Hence, combining the cases I and II, theorem 4 follows.

Similarly,

ĈL(R)
pk ∼





[
(k+1)(T−L)d2

√
ν

3d∗2σ

]
× χ−1

ν −
d2

3d∗2k
√

N
× tν(δ

(N)
L ), for μ ≥ T

d2

3d∗2
√

N
× tν(δ

(N)
L ), for μ < T

Also, C̃L(R)
pk =

d∗2
d2
× bν × ĈL(R)

pk is an unbiased estimator ofCL
pk.

Again, the plug-in estimator ofCU
pm, based on the informationfrom X−Rchart, can be defined

asĈU(R)
pm = (1+ δ̂∗(R)2

U )−
1
2 × ĈU(R)

p , where,̂δ∗(R)
U is defined aŝδ(R)

U =
d2(X−T)

R
× IU

k . Therefore,

ĈU(R)
pm ∼

U − T
3σ

×
[
χ∗U(R)

]−1
(24)
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where,χ∗U(R)2
= 1
ν

(
1+

d2
3

md2
2

)
χ2
ν +

1
N IU2

k χ
2
1(δ

(N)2

1 ) andδ(N)2

1 = N(μ−T
σ

)2. The expression for the statis-

tical distribution ofCL
pm can be obtained similarly.

Again, as obtained from theorem 3, the statistical distribution ofĈU(R)
pmk will be,

ĈU(R)
pmk ∼

U − T

3σ
√
χ∗U(R)2

−
1

3

√

1+ N
(

d∗2
d2IU

k

)2

× F1,ν(δ
(N)2

1 )

(25)

where,ĈU(R)
pmk is the plug-in estimator ofCU

pmk based on informationfrom X − R charts. The distri-

bution ofĈL(R)
pmk can now be computed accordingly.

5.2 Distributions and Expectations ofCI
p(u, v) for u = 0,1 and v = 0,1 Based

on Information fr om X − S Charts

In the context of statistical quality control, range is the most widely used measure of dispersion

due to its computational simplicity as well as ease of interpretation. Consequently, X − R charts

are often used to check and establish stability of a process. However, sometimes, range fails to

measure the dispersion of a process efficiently. This can happen when either the sample size is

moderately large, say,n > 10 or the sample size is not constant. Under suchcircumstances,X − S

charts are to be used insteadof X − Rcharts.

Following Spiring’s (1995) approach, the plug-in estimator ofCU
p based on information from the

correspondingX − S chart is,ĈU(S)
p =

c4(U−T)
3S

. Now, (S
σ
)2 ∼ 1

m(N−m)χ
2
m(N−m) [see Chatterjee and

Chakraborty (2013b)] and hence,

ĈU(S)
p ∼ c4

√
m(N −m) ×

U − T
3σ

× χ−1
m(N−m) (26)

Also, C̃U(S)
p =

bm(N−m)

c4
× ĈU(S)

p is an unbiased estimator ofCU
p .

Moreover, since under the assumption of normality of the distribution of the quality characteristic,

(X,S
2
) are complete sufficient statistics for (μ, σ2), following Rao-Blackwell theorem,̃CU(S)

p is the

UMVUE of CU
p . However, this was not the case with̃CU(R)

p asR
2

is not complete sufficient statistic
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for σ2 and hencẽCU(R)
p can not be considered as the UMVUE ofCU

p .

Similarly, ĈL(S)
p ∼ c4

√
m(N −m) × T−L

3σ × χ
−1
m(N−m) andC̃L(S)

p =
bm(N−m)

c4
× ĈL(S)

p is the UMVUE ofCL
p,

where,ĈL(S)
p =

c4(T−L)
3S

.

Again, corresponding to the definition ofCU
pk, as given in equation (11), the expression for the

plug-in estimator, based on the information from the respective X − S charts, will be,

ĈU(S)
pk =





Ĉ(S)
PU, for μ ≥ T

(k+1
k )ĈU(S)

p − 1
kĈ(S)

PU, for μ < T
(27)

Theorem 5:

ĈU(S)
pk ∼





c4

3
√

N
× tm(N−m)(δ

(N)
U ), for μ ≥ T

[
(k+1)(U−T)c4

√
m(N−m)

3kσ

]
× χ−1

m(N−m) −
c4

3k
√

N
× tm(N−m)(δ

(N)
U ), for μ < T

(28)

Also, C̃U(S)
pk =

bm(N−m)

c4
× ĈU(S)

pk is the UMVUE ofCU
pk.

Proof: Case I (μ ≥ T): Here,ĈU(S)
pk = Ĉ(S)

PU =
c4(U−X)

3S
[from equation (27)]. Hence, following

Chatterjee and Chakraborty (2013b),

ĈU(S)
pk = Ĉ(S)

PU ∼
c4

3
√

N
× tm(N−m)(δ

(N)
U ) (29)

andC̃U(S)
pk =

bm(N−m)

c4
× ĈU(S)

pk is the UMVUECU
pk when information gatheredfrom X−S chart is used

for parameter estimation.

Case II (μ < T): Here, from equations (26), (27) and (29),

ĈU(S)
pk ∼

(
k+ 1

k

)

c4

√
m(N −m) ×

U − T
3σ

× χ−1
m(N−m) −

c4

3k
√

N
× tm(N−m)(δ

(N)
U ) (30)

Hence, the distribution of̂CU(S)
pk can be obtained by combining equations (29) and (30).

Also, for μ < T,

E[ĈU(S)
pk ] =

c4

bm(N−m)
×

[(
k+ 1

k

)

×CU
p −

1
k
×CPU

]
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=
c4

bm(N−m)
×CU

pk

Thus,C̃U(S)
pk =

bm(N−m)

c4
× ĈU(S)

pk is the UMVUE ofCU
pk for μ < T.

Therefore, combining the two cases, theorem 5 follows.

Similarly,

ĈL(S)
pk ∼





[
(k+1)(T−L)c4

√
m(N−m)

3kσ

]
× χ−1

m(N−m) −
c4

3k
√

N
× tm(N−m)(δ

(N)
L ), for μ ≥ T

c4

3
√

N
× tm(N−m)(δ

(N)
L ), for μ < T

Also, C̃L(S)
pk =

bm(N−m)

c4
× ĈL(S)

pk is the UMVUE ofCL
pk, where,ĈL(S)

pk can be defined analogous tôCU(S)
pk

in equation (28).

Again, similar to the distributions of the plug-in estimators ofCU
pm based on i) single sample in-

formation [see equation (15)] andii) X − R chart information [see equation (24)], the statistical

distribution ofĈU(S)
pm can be obtained as

ĈU(S)
pm ∼

U − T
3σ

χ∗U(S)−1
(31)

where,ĈU(S)
pm denotes the plug-in estimator ofCU

pm basedon X − S chart information andχ∗U(S)2
=

1
m(N−m)×c2

4
× χ2

m(N−m) +
IU2
k

N × χ
2
1(δ

(N)2

1 ).

Finally, the distribution of the plug-in estimator̂CU(S)
pmk of CU

pmk will be

ĈU(S)
pmk ∼

U − T

3σ
√
χ∗U(S)2

−
1

3

√

1+
(

bm(N−m)

N

)
×

(
1

c4IU
k

)2

× F1,m(N−m)(δ
(N)2

1 )

(32)

The distributions of̂CL(S)
pm andĈL(S)

pmk can be obtained accordingly. Moreover, as in the earlier two

situations, here also, the unbiased estimators ofĈI (S)
pm andĈI (S)

pmk are difficult to obtain.

Thus, for all the three types of estimation procedures discussed in sections 4, 5.1 and 5.2, the newly

developed distributions of̂CI
pm andĈI

pmk are more tractable and consequently, easier to handle as

compared to those of Grau (2009). Hence, although, the estimated PCIs do not correspond to

any standard statistical distribution; they can, very well, be further utilized, for example, while

designing the corresponding process capability control charts. On the contrary, the complicated
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expressions of the said distributions, obtained through Grau’s (2009) approach, do restrict their

applications.

6 Process capability Control Charts ofCI
p(u, v)

Generally, manufacturing processes tend to have between batch as well as within batch components

of variation. Often, capability assessment of a process based on single sample information fail to

capture the actual health of the process; whereas, the usual approach of multiple sample estimation

of PCIs tend to smooth out some important fluctuations in the capability level of a process through

out the entire production cycle. Moreover, even after the stability of a process has been established

through suitable control charts, the PCI values measured by samples drawn at specific interval of

time are likely to fluctuate from sample to sample due to several reasons [Spiring (1995); Chatterjee

and Chakraborty (2013b)]. In fact one major challenge for a production engineer is to decide

the time for measuring the capability of a process. Spiring (1995) has argued for using process

capability control chart to keep constant vigil on a process.

In this context, stability of a process does not ensure consistent process capability values. This

may be due to the fact that, the usual methods of checking stability of a process using suitable

control charts, do not take into account the specification limits pertaining to the concerned quality

characteristics. Hence, even if a process is found to be stable, the particular quality characteristic

value may be highly off-target or may have unacceptable amount of variation with respect the pre-

assigned specification limits. Since often, a process is an interface between customer and producer,

which usual control chart studies grossly ignore, process capability control charts can be used to

assess consistency in the capability values of a process. In fact, it has been observed that unless

consistency in the process capability values is established through process capability control charts,

the capability of a process should not be summarized based on a single PCI value as those values

may be highly subjective and may not even reflect the true capability level of a process [refer
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Chatterjee and Chakraborty (2013b)].

Before computing capability of a process, it is mandatory to check and establish its stability

[Kotz and Johnson (2002)] which is generally done by using appropriate control charts. In case

of process capability control charts, the information gathered from these control charts are used to

estimate the process parameters (viz.,μ andσ). Chatterjee and Chakraborty (2013b) have designed

process capability control charts ofCPU andCPL based on informationfrom X−RandX−S charts.

However, as has been discussed in section 1,CPU andCPL have a number of drawbacks. Hence, for

quality characteristics with unilateral specification limits, control charts forCI
p(u, v), with u = 0,1

andv = 0,1 need to be developed. Here, we construct the control charts ofCU
p (u, v) while those

for CL
p(u, v) can be developed similarly.

6.1 Process Capability Control Charts ofCU
p

Case I: Based on Information from X − Rcharts

From equation (19),

P
[
bν
√
ν

U − T
3σ
χ−1

1−α/2,ν ≤ C̃U(R)
p ≤ bν

√
ν

U − T
3σ
χ−1
α/2,ν

]
= 1− α

Also, the control limits developed directly from the statistical distribution ofCU
p [see equation (19)]

involve μ andσ2 and hence are often unobservable. To address this problem, those parameters

should be replaced by their estimators obtained from thecorrespondingX − R andX − S charts,

which ever is applicable. Thus, the control limits of the process capability control chart ofCU
p ,

based on the information from thecorrespondingX − Rcharts, are given by

UCL(R)
CU

p
= bν
√
ν × C̃

U(∗R)

p χ−1
α/2,ν

CL(R)
CU

p
= C̃

U(∗R)

p

LCL(R)
CU

p
= bν
√
ν × C̃

U(∗R)

p χ−1
1−α/2,ν





(33)

Here,C̃
U(∗R)

p = 1
m

m∑

i=1
C̃U(∗R)

pi andC̃U(∗R)
pi is an unbiased estimator ofCU

p based on individual sample
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informationof X − R chart. It is easy to see that for any individual subgroup,C̃U(∗R)
p =

cbν1
d2

ĈU(∗R)
p

with ĈU(∗R)
p =

d2(U−T)
3R is the corresponding plug-in estimator ofCU

p .

Here, following Kuo (2010),ν1 andc can be defined asν1 = 1

−2+2

√

1+
2d2

3
d2
2

andc = d2×
√
ν1
2

Γ(
ν1
2 )

Γ(
ν1+1

2 )
.

Note that, hereν1 is defined by substitutingm = 1 in the definition ofν for individual subgroups.

In this context, while defining plug-in estimators of the respective PCIs for individual subgroups,

μ andσ are replacedby X and R
d2

respectively, instead ofusingX and R
d2

.

Case II: Based on Information from X − S charts

From equation (26),

P

[
bm(N−m)(U − T)

√
m(N −m)

3σ
× χ−1

1−α/2,m(N−m) ≤ C̃U(S)
p

≤
bm(N−m)(U − T)

√
m(N −m)

3σ
× χ−1

α/2,m(N−m)

]

= 1− α

Then, the control limits of theCU
p control chart, based on information from thecorrespondingX−S

chart, are given by

UCL(S)
CU

p
= bm(N−m)

√
m(N −m) × C̃

U(∗S)

p χ−1
α/2,m(N−m)

CL(S)
CU

p
= C̃

U(∗S)

p

LCL(S)
CU

p
= bm(N−m)

√
m(N −m) × C̃

U(∗S)

p χ−1
1−α/2,m(N−m)





(34)

Here,C̃
U(∗S)

p = 1
m

m∑

i=1
C̃U(∗S)

pi andC̃U(∗S)
pi is the UMVUE ofCU

p based on individual sample information

of X−S chart for theith subgroup, fori = 1(1)m. For any individual subgroup,̃CU(∗S)
p = bn−1Ĉ

U(∗S)
p

with ĈU(∗S)
p = U−T

3S being the corresponding plug-in estimator ofCU
p . Here, while defining plug-

in estimators of the respective PCIs for individual subgroups,μ andσ are replacedby X and S

respectively.

6.2 Process Capability Control Charts ofCU
pk

Case I: Based on Information from X − Rcharts
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Whenμ ≥ T: Here,ĈU(R)
pk = Ĉ(R)

PU and hence the control limits ofCU
pk control chart based

on X − R chart information will be the same as those of the correspondingCPU control chart as

developed by Chatterjee and Chakraborty (2013b).

Whenμ < T: Here, from equation (23),

P

[(
(k+ 1)(U − T)bν

√
ν

3kσ

)

× χ−1
1−α/2,ν −

bν

3k
√

N
× t1−α/2,ν(δ

(N)
U ) ≤ C̃U(R)

pk ≤

(
(k+ 1)(U − T)bν

√
ν

3kσ

)

× χ−1
α/2,ν −

bν

3k
√

N
× tα/2,ν(δ

(N)
U )

]

= 1− α

Thus, the control limits ofCU
pk control chart, based on information from thecorrespondingX − R

charts, will be as follows:

UCL(R)
CU

pk

=
(

(k+1)(U−T)bν
√
ν

[k(U−T)−(T−μ)]

)
× C̃

U(∗R)

pk χ−1
α/2,ν −

bν
3k
√

N
× tα/2,ν(̃δ

(N,R)

U )

CL(R)
CU

pk

= C̃
U(∗R)

pk

LCL(R)
CU

pk

=
(

(k+1)(U−T)bν
√
ν

[k(U−T)−(T−μ)]

)
× C̃

U(∗R)

pk χ−1
1−α/2,ν −

bν
3k
√

N
× t1−α/2,ν(̃δ

(N,R)

U )





(35)

Here,C̃
U(∗R)

pk = 1
m

m∑

i=1
C̃U(∗R)

pki
andC̃U(∗R)

pki
is an unbiased estimator ofCU

pk based on individual sample

informationof X − R chart, such that, for any individual subgroup,C̃U(∗R)
pk =

cbν1
d2
× ĈU(∗R)

pk , where,

ĈU(∗R)
pk is the corresponding plug-in estimator ofCU

pk. Also, δ̃
(N,R)

U = 3
√

N C̃
U(∗R)

p .

Case II: Based on Information from X − S charts

Whenμ ≥ T: Here,ĈU(S)
pk = Ĉ(S)

PU and hence here also the control limits ofCU
pk control chart

basedon X−S chart information will be the same as those of the correspondingCPU control chart

as developed by Chatterjee and Chakraborty (2013b).
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Whenμ < T: Here, from equation (30),

P

[(
(k+ 1)(U − T)bm(N−m)

√
m(N −m)

3kσ

)

× χ−1
1−α/2,m(N−m) −

bm(N−m)

3k
√

N
× t1−α/2,m(N−m)(δ

(N)
U ) ≤ C̃U(S)

pk ≤

(
(k+ 1)(U − T)bm(N−m)

√
m(N −m)

3kσ

)

× χ−1
α/2,m(N−m) −

bm(N−m)

3k
√

N
× tα/2,m(N−m)(δ

(N)
U )

]

= 1− α

Thus, the control limits ofCU
pk control chart, based on information from thecorrespondingX − S

charts, will be as follows:

UCL(S)
CU

pk

=

(
(k+1)(U−T)bm(N−m)

√
m(N−m)

k(U−T)−(T−μ)

)
× C̃

U(∗S)

pk × χ−1
α/2,m(N−m) −

bm(N−m)

3k
√

N
× t1−α/2,m(N−m)(̃δ

(N,S)

U )

CL(S)
CU

pk

= C̃
U(∗S)

pk

LCL(S)
CU

pk

=

(
(k+1)(U−T)bm(N−m)

√
m(N−m)

k(U−T)−(T−μ)

)
× C̃

U(∗S)

pk × χ−1
1−α/2,m(N−m) −

bm(N−m)

3k
√

N
× t1−α/2,m(N−m)(̃δ

(N,S)

U )





(36)

Here,C̃
U(∗S)

pk = 1
m

m∑

i=1
C̃U(∗S)

pki
andC̃U(∗S)

pki
is the UMVUE of CU

pk based on individual sample infor-

mationof X − S chart. For any individual subgroup,̃CU(∗S)
pk = bn−1 ĈU(∗S)

pk , where,ĈU(∗S)
pk is the

corresponding plug-in estimator ofCU
pk. Also, δ̃

(N,S)

U = 3
√

N C̃
U(∗S)

pk .

6.3 Process Capability Control Charts ofCU
pm

Case I: Based on Information from X − Rcharts

From equation (24), the control limits ofCU
pm control chart, based on information from the corre-

spondingX − Rcharts will be,

UCL(R)
CU

pm
=

√

1+ δ̂
∗(R)2

U × Ĉ
U(R)

pm ×
[
χ̂
∗U(R)

α/2

]−1

CL(R)
CU

pm
= Ĉ

U(R)

pm

LCL(R)
CU

pm
=

√

1+ δ̂
∗(R)2

U × Ĉ
U(R)

pm ×
[
χ̂
∗U(R)

1−α/2

]−1





(37)

Here,Ĉ
U(R)

pm = 1
m

m∑

i=1
ĈU(∗R)

pmi andĈU(∗R)
pmi is the plug-in estimator ofCU

pm based on individual sample

informationof X − R chart. Also, χ̂
∗U(R)

= 1
ν

(
1+

d2
3

md2
2

)
χ2
ν +

IU2
k

N χ
2
1(̂δ

(N,R)

1 ), where,̂δ
∗(R)

U andδ̂
(N,S)

1
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are defined accordingly.

Case II: Based on Information from X − S charts

From equation (31), the control limits of theCU
pm control chart, basedon X − S chart information,

will be,

UCL(S)
CU

pm
=

√

1+ δ̂
∗(S)2

U × Ĉ
U(S)

pm ×
[
χ̂
∗U(S)

α/2

]−1

CL(S)
CU

pm
= Ĉ

U(S)

pm

LCL(S)
CU

pm
=

√

1+ δ̂
∗(S)2

U × Ĉ
U(S)

pm ×
[
χ̂
∗U(S)

1−α/2

]−1





(38)

Here,Ĉ
U(S)

pm = 1
m

m∑

i=1
ĈU(∗S)

pmi andĈU(∗S)
pmi is the plug-in estimator ofCU

pm based on individual sample

informationof X−S charts.Also, χ̂
∗U(S)

= 1
mNC2

4
χ2

m(N−m) +
IU2
k

N χ
2
1(̂δ

(N,S)

1 ), where,̂δ
∗(S)2

U and̂δ
(N,S)

1 are

defined accordingly.

6.4 Process Capability Control Charts ofCU
pmk

Case I: Based on Information from X − Rcharts

From equation (25), the control limits of the process capability control chart ofCU
pmk will be

UCL(R)
CU

pmk

=

√

1+̂δ
∗(R)2

U ×Ĉ
U(R)

pmk

(1−α̂U )

√

χ̂
∗U(R)2

α/2

−


3

√

1+ N ×
(

d∗2
d2IU

k

)2

× Fα/2,1,ν

(

δ̂
(N,R)2

1

) 


−1

CL(R)
CU

pmk

= Ĉ
U(R)

pmk

LCL(R)
CU

pmk

=

√

1+̂δ
∗(R)2

U ×Ĉ
U(R)

pmk

(1−α̂U )

√

χ̂
∗U(R)2

α/2

−


3

√

1+ N ×
(

d∗2
d2IU

k

)2

× Fα/2,1,ν

(

δ̂
(N,R)2

1

) 


−1





(39)

Here,Ĉ
U(R)

pmk = 1
m

m∑

i=1
ĈU(∗R)

pmki
andĈU(∗R)

pmki
is the plug-in estimator ofCU

pmk based on individual sample

informationof X − Rchart.
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Case II: Based on Information from X − S charts

Based on equation (32), the control limits ofCU
pmk control chart, with information from the corre-

spondingX − S charts, can be obtained as follows:

UCLC̃U(S)
pmk

=

√

1+̂δ
∗(S)2

U ×Ĉ
U(S)

pmk

(1−α̂U )

√

χ̂
∗U(S)2

α/2

−


3

√

1+
bm(N−m)

N(c4IU
k )2 × Fα/2,1,m(N−m)

(

δ̂
(N,S)2

1

) 


−1

CLC̃U(S)
pmk

= Ĉ
U(S)

pmk

LCLC̃U(S)
pmk

=

√

1+̂δ
∗(S)2

U ×Ĉ
U(S)

pmk

(1−α̂U )

√

χ̂
∗U(S)2

1−α/2

−


3

√

1+
bm(N−m)

N(c4IU
k )2 × F1−α/2,1,m(N−m)

(

δ̂
(N,S)2

1

) 


−1





(40)

Here,Ĉ
U(S)

pmk = 1
m

m∑

i=1
ĈU(∗S)

pmki
where,ĈU(∗S)

pmki
is the plug-in estimator ofCU

pmkbased on individual sample

informationfrom X − S charts.

7 Numerical Examples

In order to discuss practical application of the theory developed so far in the present article, we

now consider two numerical examples.

7.1 Example 1

We first consider the data set originally used by Chatterjee and Chakraborty (2013b). This data

pertains to a chemical industry. The quality characteristic, which is of the smaller the better type,

is coded as ‘X’. The USL and the target for this quality characteristic are set asU = 0.3 unit and

T = 0.16 unit respectively. Also, from the said data set, the summary statistics are found to be as

m= 6, n = 5, X = 0.1577< T andR= 0.055.

Suppose, loss of profit for per 0.01 unit deviation from T towards left is $0.05 and constant selling

price per item is $5. Then, using the formulation given by Chatterjee and Chakraborty (2012), we

have,k = 4.138.
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Now, before computing various PCI values based on this data set, we need to construct the corre-

sponding process capability control charts for investigating the consistency in the capability level

of the process over various subgroups of samples. Since here the sample size ‘n’ is considerably

small (n < 10), the control limits of the process capability control charts for various processes

should be based on the information from thecorrespondingX − Rcontrol charts.

The control limits of the process capability control charts ofCU
p , CU

pk, CU
pm andCU

pmk are given

below with the corresponding control charts shown in Figures 1− 4 respectively.

UCL(R)
CL

p
= 2.3082

CL(R)
CL

p
= 1.6892

LCL(R)
CL

p
= 1.2631





(41)

UCL(R)
CL

pk
= 2.2972

CL(R)
CL

pk
= 1.6619

LCL(R)
CL

pk
= 1.2602





(42)

UCL(R)
CL

pm
= 2.7090

CL(R)
CL

pk
= 1.9715

LCL(R)
CL

pk
= 1.4790





(43)

UCL(R)
CL

pmk
= 2.6333

CL(R)
CL

pmk
= 1.9401

LCL(R)
CL

pmk
= 1.4788





(44)

FIGURES 1− 4 SHOULD BE ABOUT HERE

Since all the PCI values corresponding to all the PCI control charts, given in Figures 1− 4, lie

within the respective control limits, it is logical to expect that the process is consistently capable of

performing satisfactorily. Note that, the control charts forCU
p andCU

pk are based on their unbiased

estimator values for individual subgroups, while, the charts forCU
pm andCU

pmk are based on the

corresponding plug-in estimators only (due the unavailability of their unbiased estimators).

Based on the given data,̂CU(R)
p = 1.9736, C̃U(R)

p = 1.9242, ĈU(R)
pk = 1.9657, C̃U(R)

pk = 1.9166,

ĈU(R)
pm = 1.9730 and̂CU(R)

pmk = 1.9652.

It is easy to check that for individual subgroups, the values of the plug-in estimators for all these

four PCIs follow the said interrelationship. Also, since all the estimated PCI values are within

the corresponding UCL and LCL, irrespective of the choice of the PCI, it is logical to expect that
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the process is having consistent capability over the production cycle and hence the situation is

favourable for overall assessment of the process through a single PCI value.

Usingk = 4.138 and from equation(10), the threshold value ofCU
p will be CU(T)

p = 0.389. Thus, the

process can be considered to be performing satisfactorily. Also,sinceX < T, P̂U(E)
NC = 2.254×10−9,

i.e. NCPPME = 2.254× 10−6 which is quite small and hence justifies the high values of the PCIs.

On the other hand,̂PU
NC = 3.903× 10−9 i.e., NCPPM= 3.903× 10−6. Thus, similar to the case of

asymmetric specification limits, here also,PU
NC does not always give minimum observable PNC.

This is due to that fact thathere,X < T and thus, the average quality level is actually better than

that of the so called “potential quality level” i.e.μ = T.

Note that, although, in the present example, the process is found to be stable as well as consistently

capable, this may not always be the case. In the following example, we shall discuss about such a

process.

7.2 Example 2

While discussing about the process capability control charts ofCPU andCPL, Chen et al. (2007)

have considered a dataset from a integrated circuit (IC) manufacturing process, where one of the

major quality characteristics is wire bonding of gold wire. This is a quality characteristic of higher

the better type with lower specification limit (LSL) being 5 mm. The dataset consists of 25 sub-

groups each having 11 sample observations. Thus,L = 5, m = 25 andn = 11. Since, here the

sample size is considerably large, data gathered from thecorrespondingX − S chart are used to

construct the required process capability control charts. These charts are given in Figures 5 and 6

below:

FIGURES 5 and 6 SHOULD BE ABOUT HERE
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From Figures 5 and 6, it is evident that the process is stable and hence we can proceed to assess its

capability. Now, since in the original dataset provided by Chen et al. (2007), sufficient information,

required for the computation of ‘k’, is not available, let us consider ‘k’ to have the same value as

in example 1, i.e.,k = 4.138.

Then, the control limits of the process capability control charts forCL
p, CL

pk, CL
pm andCL

pmk can be

obtained respectively as follows:

UCL(S)
CL

p
= 1.3551

CL(S)
CL

p
= 1.3313

LCL(S)
CL

p
= 1.3084





(45)

UCL(S)
CL

pk
= 1.6083

CL(S)
CL

pk
= 1.2720

LCL(S)
CL

pk
= 1.2564





(46)

UCL(S)
CL

pm
= 1.4111

CL(S)
CL

pk
= 1.3988

LCL(S)
CL

pk
= 1.3533





(47)

UCL(S)
CL

pmk
= 1.4144

CL(S)
CL

pmk
= 1.3386

LCL(S)
CL

pmk
= 1.3111





(48)

Also, the corresponding control charts are given in Figures 7− 10.

FIGURES 7− 10SHOULD BE ABOUT HERE

Figures 5−10 reveal an interesting fact. Unlike the process capability control charts for example

1, here, despite being stable (see Figures 5 and 6), the process fails to prove itself as consistently

capable (see Figures 7− 10) as around 15 out of the 25 subgroup PCIs lie below the LCL for

all the four PCIs viz.,CL
p, CL

pk, CL
pm and CL

pmk. Note that, since PCIs are generally of higher

the better type, only subgroups having PCI values less than the respective LCLs of the process

capability control charts are of the concern. In fact, for a process capability control chart, LCL

signifies that under the prevailing process centering as well as process dispersion scenario, the

concerned quality characteristic should be able to achieve atleast LCL amount of capability value;

while subgroups with PCI values higher than UCL are of satisfactory quality. However, for all

the four PCIs, the index values corresponding to subgroups 24 and 25 need more exploration as

those are grossly deviated from the UCL. This may indicate certain change in centering and/or
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dispersion level of the concerned quality characteristic. An inner-view into the process indeed

reveals that the level of variation is considerably smaller for these two subgroups as compared to

the remaining subgroups. Chen et al.’s (2007) control chart forC)PU andCPL failed to capture

this aspect of the process. Thus, since the process capability values of the process are highly

unstable, the usual single valued capability assessment of the process is not solicited at this stage

of production [refer Chatterjee and Chakraborty (2013b)]. For example, the values of the plug-in

estimators ofCL
p, CL

pk, CL
pm andCL

pmk, based on the information from thecorrespondingX−S chart

areĈL(s)
p = 1.328441, ĈL(s)

pk = 1.3278, ĈL(s)
pm = 1.328396 and̂CL(s)

pmk = 1.3256. Also, the UMVUEs

of CL
p andCL

pk areC̃L(s)
p = 1.3619 andĈL(s)

pk = 1.3613. It is easy to observe that these sample PCI

values tend to average out the actual fluctuations in the subgroup level PCI values. For example,

UMVUEs of CL
pk values at subgroup level, range from 0.8339 (corresponding to subgroup 3) to

2.2633 (corresponding to subgroup 24); which is almost averaged out throughĈL(s)
pk = 1.3613.

Such situation is valid for the other three PCIs as well.

Another interesting point to note from both of these examples is that, unlike example 1, where, the

control limits are wide apart - to accommodate all the subgroup PCIs; for example 2, the control

limits are very closely aligned. This is due to the fact that the control limits formulated in the

present article are functions of the number of subgroups (m) and the sample size (n) and they come

closer if atleast one of ‘m’ and ‘n’ gets increased. This property can also be observed in the cases

of the socalledX, S and R charts and also the process capability control charts forCPU andCPL

designed by Chatterjee and Chakraborty (2013b).

8 Conclusions

CU
p (u, v) andCL

p(u, v) [jointly expressed asCI
p(u, v), vide equation (2)], are two very important

classes of PCIs, developed by Grau (2009), for quality characteristics having unilateral specifica-

tion limits. Along with the expression of ‘k’ [vide equation (3)], as suggested by Chatterjee and
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Chakraborty (2012),CI
p(u, v) addresses almost all the drawbacks of the existing PCIs for unilateral

specification limits, from both the distributional and interpretational viewpoint.

In the present article, we have discussed about some important statistical properties ofCU
p (u, v)

andCL
p(u, v). We have developed relationship betweenCI

p, C
I
pk and proportion of non-conformance,

for the situation where,μ , T and have observed that unlike the symmetric bilateral specification

limits, here the production of items on target do not always ensure production of minimum attain-

able PNC. We have also formulated the expressions for the threshold valuesCI
p. Contradicting the

usual convention of considering ‘1’ as the threshold value of any PCI irrespective of the nature

of the specification limits; our expression for the threshold value show that for unilateral speci-

fication limits, the threshold value is not unique and is always smaller than ‘1’.CI
p(u, v) being a

comparatively new super-structure of PCIs as compared to the other existing PCIs for unilateral

specification limits, these crucial statistical properties of it were hardly explored before in litera-

ture.

Next, we have studied the distributional properties of the member indices ofCI
p(u, v). Although

Grau (2009) had already studied these properties earlier, his expressions involve difficult mathe-

matical formulation and hence are unsuitable for further application. On the contrary, we have

formulated more tractable distributions of these PCIs based on single sample information as well

as information gatheredfrom X−RandX−S charts. Moreover, forCI
p andCI

pk, the corresponding

UMVUEs (or unbiased estimators,whenX − R chart information is used) have been developed.

We have also designed the process capability control charts ofCI
p(u, v) for u = 0,1 andv = 0,1.

Finally, we have discussed two numerical examples to validate our theoretical findings dis-

cussed in this article. It has been observed that, although stability is a necessary condition to be

satisfied before computing PCI values; it is not the sufficient. Particularly, the process described

in example 2 is stable but does not have consistent capability. In fact, due to such unwarranted

fluctuations in PCI values over the subgroups, summarization of the overall process capability

through the use of a single PCI value is not solicited. There is no denying of the fact that proper
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interpretation as well as apt application of a PCI is a key to successful implementation of the pro-

cess capability studies in a process. The present article, grossly, puts emphasis on this very fact

by studying various crucial distributional and interpretational aspects of some PCIs for unilateral

specification limits and by discussing some prospective areas of applications.
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