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ABSTRACT
Among all the process capability indices, Cpk is the most popular among
the practitioners, when the underlying quality characteristic follow normal
distribution.Due to its complicatedexpression, properties of its plug-in esti-
mator have beenof particular interest to several researchers both fromclas-
sical and Bayesian statistical arena. In the present article, we have proposed
plug-in estimators of Cpk based on the X − R and X − S chart information
under the assumption that each of the samples are drawn independently.
We have also derived the expressions for expected values of these estima-
tors and the associated bias. These estimators are found to work similar to
the Bayesian-like estimators without depending upon any historical infor-
mation. The correspondingprocess capability control charts have also been
designed to enable continuous assessment of a process. Finally, a simulated
example and two real-life examples havebeendiscussed to supplement the
theory developed in this article.
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1. Introduction

Process capability index (PCI) is one of the most versatile statistical tool to assess the capability of a
process to produce items within the pre-assigned specification limits.

Under the assumption of normality of the distribution of the quality characteristic under consid-
eration, the four classical PCIs for univariate processes with bilateral specification limits are

Cp = USL − LSL
6σ

,

Cpk = d − |μ − M|
3σ

,

Cpm = d
3
√

σ 2 + (μ − T)2
,

Cpmk = d − |μ − M|
3
√

σ 2 + (μ − T)2
, (1)

where USL and LSL are, respectively, the upper and lower specification limits of a process,
d = (USL − LSL)/2,M = (USL + LSL)/2 and T is the target of the process (refer [1,2]).
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Among these PCIs, Cp measures the potential capability of a process, that is, the capability level
achievable by a process when it is perfectly centred on target; Cpk takes into account both the process
centring as well as the process dispersion with respect to the concerned quality characteristic; Cpm
measures the proximity of the process centring towards the target T and Cpmk is the third generation
PCI (refer [1]) which is defined combining Cpk and Cpm. Among these, Cpk is the most popular PCI
among the practitioners in manufacturing industries.

Likemost of the PCIs available in the literature,Cpk is also defined as a function of the parameters of
the quality characteristics, namelyμ and σ [vide equation (1)]. Sinceμ and σ are often unobservable
in practice, the true value of Cpk is also unobservable. This necessitates defining its plug-in (natural)
estimator as

Ĉpk = d − |X̄ − M|
3S

, (2)

where X̄ = (1/n)
∑n

i=1 Xi is the sample mean; S =
√

(1/(n − 1))
∑n

i=1(Xi − X̄)2 is the sample
standard deviation and n is the sample size.

Although, the common industrial practice is to draw conclusion about the so-called capability or
incapability of a process based on Ĉpk value itself; since it is based onmere sample observations, often
such Ĉpk values are subjected to the perils of sampling fluctuations. Hence, the statistical properties of
Ĉpk need to be studied extensively. However, the existence of the modulas function in the definition
of Ĉpk makes such study somewhat difficult and hence has drew substantial attention of many emi-
nent statisticians (refer [2,3] and the references there-in). Novoa and Leon [4] derived the statistical
distribution of Ĉpk, based on the concept of folded normal distribution. The testing of hypothesis
problems related to Ĉpk have been studied by Chen and Hsu [5] and Lin [6] among others.

However, it has been observed time and again that, inference drawn on process capability based on
single sample information is often subject to high degree of sampling fluctuations. Hence amore plau-
sible alternative is to use subsample information to define the plug-in estimator ofCpk. The properties
of such estimators of Cpk have been studied by Lin and Sheen [7,8].

Due to its huge popularity among practitioners, Cpk has found substantial application in develop-
ing various sampling inspection plans (refer [9–14] and so on) and product acceptance determination
(refer [15]). Pearn and Liao [16] discussed about the procedure of assessing the capability of a pro-
cess using Cpk, when the measurements of the concerned quality characteristic suffer from gauge
measurement error.

Although, most of the studies of the distributional and inferential properties of Ĉpk are based on
the so-called classical frequentist approach, ample research work have been carried in this field from
Bayesian perspective as well (refer [17–20] and so on). Pearn and Chen [17,18] defined Bayesian-like
estimators of Cpk and studied their distributional and inferential properties. Later, Lin and Sheen [7]
have studied some inferential properties of the Bayesian-like estimator of Cpk, defined by Pearn and
Chen [17], using control chart data.

Note that, proper evaluation of such Bayesian-like estimator requires adequate knowledge of his-
torical information, like Pr(μ < M) and Pr(μ > M), of a statistically stable process. However, often,
such historical data may not be always available and/or reliable due to the following reasons:

(1) The concerned authority may be ignorant about the storage of historical data .
(2) Even if the historical data are available, it may not be reliable for further use, due to anomaly in

measuring system or erratic practice of collecting the data .
(3) Finally, there remains ample room for favourable manipulation in the estimated Cpk value, by

simply playing with the prior probabilities, namely Pr(μ < M) and Pr(μ > M).

In this context, while constructing the lower confidence bounds (LCB) of Cpk, based on classical
approach and lower credible bound based on Bayesian approach, Pearn et al. [21] have suggested
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using the classical approach over the Bayesian one. To be more precise, the authors observed that, the
LCB computed using the classical method is always greater than its Bayesian counterpart.

Now, before assessing the capability of a process through a suitable PCI, one needs to check and
establish the statistical stability of the said process through the use of appropriate control charts
like X̄− R or X̄− S charts (refer [22]). Although, for a statistically stable process, the estimates
of the parameters (namely μ and σ ) can be obtained directly from these control charts, in prac-
tice, they are not used in the subsequent stages of capability assessment. Rather, fresh samples
are drawn to estimate the same parameters − making the entire procedure highly uneconomical
(refer [23]).

Pearn et al. [21] defined the plug-in estimators of Cp based on X̄ − R and X̄ − S control chart
information anddiscussed about the corresponding hypothesis testing procedure. They have also sug-
gested a step-by-step procedure to enable the practitioners to decide whether the concerned process is
capable or not. Lin and Sheen [7] argued for estimatingCpk based on control chart information. How-
ever, they have adopted Bayesian approach requiring the knowledge of the probabilities Pr(μ < M)

and Pr(μ > M), which may not always be available.
In the present article, we have defined a plug-in estimator ofCpk based on X̄ − R and X̄ − S control

chart information and have derived the expressions for the corresponding expectations and the asso-
ciated biases. Since this addresses the problem of volatility of the estimators based on single sample
information and at the same time, does not require any historical information, it is more suitable for
application in practice than the existing estimators of Cpk.

Interestingly, despite being themost adopted approach in practice, point estimates of PCIsmay not
always depict the true health of a process. Infact, being a continuous flow of activity, the performance
of a process is supposed to change over the entire production cycle. This should be reflected by the
associated PCIs (refer [23,24]). Unfortunately, while PCIs estimated using single sample information
may not always represent the overall capability scenario of a process due to the influence of sampling
fluctuation (refer [25]); PCIs estimated using multiple sample information are often prone to smooth
out some important fluctuations in the capability level of a process (refer [23]).

Boyles [26] first advocated the use of process capability control charts, in the context of the PCI
Cpm (refer Equation (1)) to capture the changes in capability level of a process over time. Later Spir-
ing [25] redefined the control limits of thisCpm control chart by introducing the use of the information
gathered from the corresponding X̄− R and X̄− S charts. Spiring [27] has discussed capability assess-
ment of short-run processes using Cpm, based on control chart data. However, as has been observed
by Chatterjee and Chakraborty [23], Spiring’s [25] approach suffered from some fundamental prob-
lems in a sense that, while developing the control limits of Cpm control chart, Spiring [25] made use
of the plug-in estimators of Cpm based on control chart data, while the associated distribution was
that of the single sample estimator of Cpm.

Chatterjee and Chakraborty [23,24] fine-tuned the methodology adopted by Spiring [25] and
designed process capability control charts of Cpu = (USL − T)/3σ , Cpl = (T − LSL)/3σ and some
other popular PCIs for unilateral specification limits. The authors have also enlisted some advantages
of using process capability control charts over the use of the single or multiple sample-based plug-in
estimators of PCIs, like (i) requirement of lesser sample size, (ii) reduction in sampling cost – making
the entire procedure of process capability analysis more economical – and (iii) enabling continuous
assessment of process performance.

Apart from these, Kuo [28] designed a control chart for Cp, based on R-chart information. Leung
and Spiring [29]modified the control limits ofCpm control chart for the processes, where the assump-
tion of normality of the underlying distribution is violated. Some other interesting properties of Cpm
control chart have also been studied by Kuo et al. [30], Morita et al. [31] and Wu [32]. Wu [32] used
the concept of target costing to establish goal control limits, based on the relationship among the loss
function, PCIs and control charts. Testing process capability in the context of unilateral specification
limits with subgroup information was carried out by Wu [33]. Wu [34] discussed about computing
PCI values based on subsample information from Bayesian perspective.
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Thus, due to its enormous practical utility, control charts have been designed for most of the pop-
ular PCIs like Cp, Cpm, Cpu, Cpl and so on. However, despite being one of the most widely accepted
PCIs among practitioners, the case ofCpk has been grossly neglected in this regard, probably due to its
complicated statistical distribution. Although Novoa and Leon [4] designed a control chart for Cpk,
they did not provide any explicit form of the corresponding control limits. Moreover, similar to Spir-
ing [25], they also did not take the contribution of the number of subgroups (say,m) into account. To
address these problems, we have designed process capability control charts ofCpk based on the X̄ − R
and X̄ − S chart information.

In the next section, we have defined plug-in estimators of Cpk using X̄ − R and X̄ − S chart
information and have derived the corresponding expectations along with the associated biases. In
Section 3, the corresponding process capability control charts of Cpk are designed. Some numerical
examples are discussed in Section 4 to supplement the theory developed in this article. Finally, we
conclude the article in Section 5 with a brief summary of the article.

2. Estimation of Cpk based on X̄ − R and X̄ − S chart information and the
associated bias

Following Pearn and Kotz [2], Cpk can be redefined as

Cpk =
{
1 − |μ − M|

d

}
× d

3σ
. (3)

Suppose the quality characteristic under consideration is normally distributed and the concerned
process is under statistical control. Also, suppose, while checking stability of the process, we have m
rational subgroups (refer [22]) and from each rational subgroup, a sample of size n is drawn. Here
we assume constant sample size for all the rational subgroups. So the total number of observations is
N =mn. Also let Xij is the measured value of the quality characteristic for the jth sample from the ith
rational subgroup such that Xij ∼ N(μ, σ 2), for i = 1(1)m and j = 1(1)n. Then,

(1) ¯̄X = (1/N)
∑m

i=1
∑n

j=1 Xij = (1/m)
∑m

i=1 X̄i is the average of subgroup averages .
(2) S̄ = (1/m)

∑m
i=1 Si is the average of the standard deviations over the subgroups with Si =√

1/(n − 1)
∑n

j=1(Xij − X̄i)2 being the standard deviation corresponding to the ith subgroup
for i = 1(1)m.

(3) R̄ = (1/m)
∑m

i=1 Ri is the average of the ranges over the subgroups with Ri being the range
corresponding to the ith subgroup for i = 1(1)m.

2.1. Plug-in estimator of Cpk based on X̄ − R chart information and the corresponding
expectation

The plug-in (natural) estimator ofCpk, based on X̄ − R chart information, can be defined, by replacing
μ and σ , respectively, by ¯̄X and R̄/d2 in Equation (3), as

Ĉ(R)

pk = dd2
3

{
1 − | ¯̄X − M|

d

}
× 1

R̄
, (4)

where d2 is a function of the sample size n (refer [22]).
Following Lord [35] and Lin and Sheen [7], ¯̄X and R̄ are mutually independent under the

assumption of normality of the quality characteristic under consideration. Thus from Equation (4)

E[Ĉ(R)

pk ] = dd2
3

×
[
1 − E

(
| ¯̄X − M|

d

)]
× E(R̄−1). (5)
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We have already assumed that Xij ∼ N(μ, σ 2), which implies, ¯̄X ∼ N(μ, σ ∗2), where, σ ∗2 =
σ 2/N. Hence, following Leone et al. [36], | ¯̄X − M| follows folded normal distribution with mean

μ∗
f = σ

√
2√

Nπ
× e−

N(μ−M)2

2σ2 + (μ − M) ×
[
1 − 2�

(
− (μ − M)

√
N

σ

)]
, (6)

where � denotes the cdf of univariate standard normal distribution and variance

σ ∗2
f = (μ − M)2 + σ 2

N
− μ∗2

f . (7)

Notationally, | ¯̄X − M| ∼ FN(μ∗
f , σ

∗2
f ).

Hence,

E[| ¯̄X − M|] = μ∗
f . (8)

Also, following Woodall and Montgomery [37], R̄/σ ∼ (d∗
2/

√
v) × χv approximately, where, v =

1/(−2 + 2
√
1 + 2/m × (d3/d2)2) and d∗

2 =
√
d22 + d23/m, d3 being a function of n (refer [22]). Thus,

E(R̄−1) =
(√

v

σd∗
2

)
× E(χ−1

v )

=
√

v

2
× 1

d∗
2σ

× �(v−1
2 )

�(v
2 )

. (9)

Hence, substituting Equations (8) and (9) in Equation (5)

E[Ĉ(R)

pk ] = dd2
3

×
[
1 −

μ∗
f

d

]
×
√

v

2
× 1

d∗
2σ

× �
(

v−1
2
)

�
(

v
2
)

= dd2
3σbvd∗

2
×
(
1 −

μ∗
f

d

)
, (10)

where bv = √
2/v × �(v/2)

�((v−1)/2) .

2.2. Bias in estimating Cpk with X̄− R chart information

From Equation (10), E[Ĉ(R)

pk ] can be alternatively written as

E[Ĉ(R)

pk ] = {f (R)(m, n)} × d
3σ

×
(
1 −

μ∗
f

d

)
, (11)

where f (R)(m, n) = d2/(bv × d∗
2), which is a function ofm and n only.

Thus, from Equations (3) and (11), the expression for the bias, in estimating Cpk using Ĉ
(R)

pk , is

biasCpk(Ĉ
(R)

pk ) = E[Ĉ(R)

pk ] − Cpk

= d
3σ

× {f (R)(m, n) − 1} + 1
3

×
[

|μ − M|
σ

− {f (R)(m, n)} ×
μ∗
f

σ

]

= d
3σ

× bias(R)
1 + 1

3
× bias(R)

2 , (12)

where bias(R)
1 = f (R)(m, n) − 1 and bias(R)

2 = |μ − M|/σ − {f (R)(m, n)} × μ∗
f /σ .
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From Equation (12), it is evident that biasCpk(Ĉ
(R)

pk ) → 0, if and only if f (R)(m, n) → 1 and
(μ∗

f /σ − |μ − M|/σ) → 0 simultaneously.
Let

μ∗
f /σ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
μ∗
f

σ

)
+

for μ > M,

(
μ∗
f

σ

)
−

for μ < M.

We know that for x> 0, 1 − 2�(−x) = −[1 − 2�(x)]. Hence, from Equation (6)

μ∗
f

σ
=
√

2
Nπ

× e−
N(μ−M)2

2σ2 −
(

μ − M
σ

)
×
[
1 − 2�

(
(μ − M)

√
N

σ

)]
. (13)

Now, for μ > M(
μ∗
f

σ

)
+

=
√

2
Nπ

× e−
N(μ−M)2

2σ2 −
(

μ − M
σ

)
×
[
1 − 2�

(
(μ − M)

√
N

σ

)]
. (14)

Also, for μ < M(
μ∗
f

σ

)
−

=
√

2
Nπ

× e−
N(μ−M)2

2σ2 −
{
−
(

μ − M
σ

)}
×
[
1 − 2�

(
− (μ − M)

√
N

σ

)]

=
√

2
Nπ

× e−
N(μ−M)2

2σ2 −
{
−
(

μ − M
σ

)}
×
[
−
{
1 − 2�

(
(μ − M)

√
N

σ

)}]

=
√

2
Nπ

× e−
N(μ−M)2

2σ2 −
(

μ − M
σ

)
×
[
1 − 2�

(
(μ − M)

√
N

σ

)]
. (15)

Thus, (μ∗
f /σ)+ = (μ∗

f /σ)−. Therefore, the expression for μ∗
f /σ does not depend upon whether

μ > M or μ < M.
Now, to have a deeper look into the characteristics of biasCpk(Ĉ

(R)

pk ), we consider |μ − M|/σ =
0(0.5)2.0 (similar to [38]), m = 5(1)10, 15, 20, 25, n = 2(2)10 and N = 10, 30, 50, 70, 100, 150, 200.
The corresponding values of f (R)(m, n) (i.e. bias(R)

1 + 1) and bias(R)
2 are given in Tables 1 and 2,

respectively. In Table 2, f (R)(m, n) is abbreviated by f.
Following observations can be made from Tables 1 and 2:

(1) f (R)(m, n) decreases with the increase in at least one of m and n. Hence, increase in sample size
and/or number of rational subgroups, will decrease the value of f (R)(m, n), which in turn will
decrease bias(R)

1 .
However, increasing m and n unboundedly may not always be practically feasible, due to the
following reasons:
(a) High values of m may introduce heterogeneity among the characteristics of the sampled

items, as there is supposed to be substantially large time span between the initial and the
final rational subgroup.

(b) High values of n, say n ≥ 10 solicits use of S-chart instead of R-chart (refer [22]), since range
may fail to capture the true dispersion scenario for such samples.

(2) For 5 ≤ n < 10 and 8 ≤ m ≤ 20, f (R)(m, n), is fairly close to 1 without extra-ordinary increase
in the values ofm and/or n.
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Table 1. f (R)(m, n) values corresponding to different values ofm and n.

n

m 2 3 4 5 6 7 8 9 10

5 1.1267 1.0653 1.0391 1.0317 1.0228 1.0193 1.0175 1.0153 1.0135
6 1.1365 1.0515 1.0314 1.0269 1.0194 1.0622 1.0145 1.0125 1.0114
7 1.1069 1.0424 1.0284 1.0218 1.0161 1.014 1.0123 1.0106 1.0099
8 1.0877 1.0361 1.0242 1.0194 1.0144 1.0123 1.0107 1.0095 1.0085
9 1.0742 1.0315 1.0210 1.0175 1.0130 1.0107 1.0095 1.0084 1.0076
10 1.0642 1.0301 1.0186 1.0152 1.0114 1.0096 1.0083 1.0075 1.0068
15 1.0430 1.0185 1.0126 1.0093 1.0076 1.0064 1.0056 1.0049 1.0045
20 1.0296 1.0139 1.0093 1.0069 1.0056 1.0048 1.0042 1.0037 1.0034
25 1.0241 1.0111 1.0074 1.0056 1.0045 1.0038 1.0033 1.0030 1.0027

Table 2. bias(R)2 values corresponding to different values of |μ − M|/σ and N.

|μ−M|
σ

N 0 0.5 1.0 1.5 2.0

10 −0.2525f 0.5–0.5154f 1−1.0001f 1.5(1 − f ) 2(1 − f )
30 −0.1457f 0.5–0.5003f 1−f 1.5(1 − f ) 2(1 − f )
50 −0.1128f 0.5–0.50001f 1−f 1.5(1 − f ) 2(1 − f )
70 −0.0954f 0.5(1 − f ) 1−f 1.5(1 − f ) 2(1 − f )
100 −0.0798f 0.5(1 − f ) 1−f 1.5(1 − f ) 2(1 − f )
150 −0.0651f 0.5(1 − f ) 1−f 1.5(1 − f ) 2(1 − f )
200 −0.0564f 0.5(1 − f ) 1−f 1.5(1 − f ) 2(1 − f )

(3) According to Table 2, for |μ − M|/σ ≥ 1.0, bias(R)
2 → |μ − M|/σ × (1 − f ) even for the value

of N as small as 10. Also, for 0.5 ≤ |μ − M|/σ < 1.0, bias(R)
2 → |μ − M|/σ × (1 − f ) for

N > 50. Thus, for f (R)(m, n) → 1, bias(R)
2 → 0, under these situations. In other words, for

sufficiently large N and |μ − M|/σ ≥ 0.5, biasCpk(Ĉ
(R)

pk ) → 0 if and only if f (R)(m, n) → 1.
(4) Interestingly, the desired values ofm and n in Table 1, also satisfy the desired values ofN obtained

from Table 2, for |μ − M|/σ ≥ 0.5.
(5) For |μ − M|/σ = 0, bias(R)

2 reduces very slowly even for N ≥ 200. This indicates that the per-
formance of C(R)

pk , as an estimator of Cpk is not satisfactory when μ is very close toM in σ unit.

However, this is not a very vital drawback of C(R)

pk , as when μ � M, indicating that the process
is perfectly centred with respect to the USL and LSL, Cp is used, instead of Cpk, to assess the
capability of the process.

(6) By definition, d/3σ > 0 and from Table 1 f (R)(m, n) > 1. Hence, from Equation (12), even if
bias(R)

2 → 0 and bias(R)
1 is small but not sufficiently close to 0, then biasCpk(Ĉ

(R)

pk ) > 0. Therefore,

in general, C(R)

pk has a tendency to generate positive bias (however small).

2.3. Plug-in estimator of Cpk based on X̄ − S chart information and the corresponding
expectations

Although, due to its simplistic definition, range is the most popular measure of dispersion in the con-
text of statistical quality control, many a times, the sample size is sufficiently large, say n > 10 and/or
it varies over subgroups. In such situations, standard deviation out-performs range as a dispersion
measure (refer [22]) and hence, the use of X̄− S chart is solicited, rather than X̄− R chart, to check
and establish statistical stability of a process.
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Proceeding similar to the definition of Ĉ(R)

pk [vide equation (4)] and replacing μ and σ , respec-

tively, by ¯̄X and S̄/c4 in Equation (3), the plug-in (natural) estimator of Cpk, based on X̄ − S chart
information, can be defined as

Ĉ(S)
pk = dc4

3

{
1 − | ¯̄X − M|

d

}
× 1

S̄
. (16)

Here, c4 is a function of the sample size n (refer [22]).
Following Chatterjee and Chakraborty [23], S̄2/σ 2 ∼ 1/m(N − m) × χ2

m(N−m). Hence,

E[Ĉ(S)
pk ] = dc4

3

{
1 − E

(
| ¯̄X − M|

d

)}
× E

(
S̄−1)

= dc4
3σbm(N−m)

×
(
1 −

μ∗
f

d

)
, (17)

where bm(N−m) = √
2/m(N − m) × �(m(N − m)/2)/�(m(N − m) − 1/2).

2.4. Bias in estimating Cpk with X̄− S chart information

From Equation (17), E[Ĉ(R)

pk ] can be alternatively written as

E[Ĉ(S)
pk ] = {f (S)(m, n)} × d

3σ
×
(
1 −

μ∗
f

d

)
, (18)

where f (S)(m, n) = c4/bm(N−m), which solely is a function ofm and n.
Thus, from Equations (3) and (18), the expression for the bias, in estimating Cpk using Ĉ

(S)
pk , is

biasCpk(Ĉ
(S)
pk ) = E[Ĉ(S)

pk ] − Cpk

= d
3σ

× {f (S)(m, n) − 1} + 1
3

×
[

|μ − M|
σ

− {f (S)(m, n)} ×
μ∗
f

σ

]

= d
3σ

× bias(S)1 + 1
3

× bias(S)2 , (19)

where bias(S)1 = f (S)(m, n) − 1 and bias(S)2 = |μ − M|/σ − {f (S)(m, n)} × μ∗
f /σ .

Thus, similar to the case of Ĉ(R)

pk , in Section 2.2, here also it is evident that, biasCpk(Ĉ
(S)
pk ) → 0, if

and only if f (S)(m, n) → 1 and |μ − M|/σ → μ∗
f /σ simultaneously.

While studying the properties of biasCpk(Ĉ
(S)
pk ), it is interesting to note that, Table 2 will remain

valid for bias(S)2 as well, with the only difference being that, here f stands for f (S)(m, n) instead of
f (R)(m, n). Hence, it is sufficient to compute the values of f (S)(m, n) and consequently, those of bias(S)1
for various values of m and n. For this, we consider m= 5,6,7 and n = 10(1)15. The corresponding
values of f (S)(m, n) (i.e. bias(S)1 + 1) is given in Table 3.

From the above discussion and from Table 3, following observations can be made:

(1) Form ≥ 7, f (S)(m, n) → 1 for any sample size n (≥ 10).
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Table 3. f (S)(m, n) values corresponding to different values ofm and n.

n

m 10 11 12 13 14 15

5 0.9760 0.9783 0.9803 0.9819 0.9837 1.0
6 0.9750 1.0 1.0 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0 1.0 1.0

(2) Form= 6, n should be at least 11; while form ≤ 5, n should be at least 15. However in practice,
m ≤ 5 is hardly observed.

(3) biasCpk(Ĉ
(S)
pk ) tends to 0 more rapidly than biasCpk(Ĉ

(R)

pk ). This indicates towards the better

performance of Ĉ(S)
pk as compared to Ĉ(R)

pk in estimating Cpk.
(4) Unlike f (R)(m, n), f (S)(m, n) ≤ 1.
(5) As can be observed from Table 2, which is valid for biasCpk(Ĉ

(S)
pk ) as well, for 0.5 ≤ |μ − M|/σ ≤

2.0 andN ≥ 50, bias(S)2 → (1 − f ) × |μ − M|/σ . Here,N ≥ 50 satisfy the desirable values ofm
and n as obtained from Table 3.

(6) By definition, d/3σ > 0 and from Table 3, f (S)(m, n) ≤ 1. Hence, from Equation (19), even if
bias(S)2 → 0 and bias(S)1 is small but not sufficiently close to 0, as may sometimes be the case with
m ≤ 5, then biasCpk(Ĉ

(S)
pk ) < 0. Therefore, in general, C(S)

pk has a tendency to generate negative
bias (however small).

3. Process capability control charts of Cpk
Weshall nowdesign the control limits of the process capability control charts ofCpk based on informa-
tion from the corresponding X̄− R and X̄− S charts following the approach suggested by Chatterjee
and Chakraborty [23].

3.1. Process capability control chart of Cpk using X̄− R chart information

From Equation (4), Ĉ(R)

pk = (dd2/3){1 − | ¯̄X − M|/d} × 1/R̄. Also, following [37], R̄ ∼ (σ d∗
2/

√
v) ×

χv and | ¯̄X − M| ∼ FN(μ∗
f , σ

∗2
f ), where,μ∗

f and σ ∗2
f are defined in Equations (6) and (7), respectively.

Now, let τ (FN)
α (μ∗

f , σ
∗2
f ) denotes the upper α%− point of a folded normal distribution with mean μ∗

f
and variance σ ∗2

f . Thus,

1 − α = P
[(

σ d∗
2√
v

)
× χ1− α

2 ,v ≤ R̄ ≤
(

σ d∗
2√
v

)
× χα

2 ,v

]

= P

[
dd2
3

×
{
1 − 1

d
× τ

(FN)
α
2

(
μ∗
f , σ

∗2
f

)}
×

√
v

σd∗
2

× χ−1
α
2 ,v

≤ dd2
3

×
{
1 − | ¯̄X − M|

d

}
× 1

R̄

≤ dd2
3

×
{
1 − 1

d
× τ

(FN)

1− α
2

(
μ∗
f , σ

∗2
f

)}
×

√
v

σd∗
2

× χ−1
1− α

2 ,v

]

= P
[
dd2
3

×
{
1 − 1

d
× τ

(FN)
α
2

(
μ∗
f , σ

∗2
f

)}
×

√
v

σd∗
2

× χ−1
α
2 ,v

≤ Ĉ(R)

pk

≤ dd2
3

×
{
1 − 1

d
× τ

(FN)

1− α
2

(
μ∗
f , σ

∗2
f

)}
×

√
v

σd∗
2

× χ−1
1− α

2 ,v

]
from Equation (4). (20)
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Hence, from Equation (20), the upper control limit (UCL), central line (CL) and lower control
limit (LCL) of Cpk control chart, based on information from the corresponding X̄− R chart, are,
respectively, as follows:

UCLC(R)
pk

= dd2
3

×
{
1 − 1

d
× τ

(FN)

1− α
2
(μ∗

f , σ
∗2
f )

}
×

√
v

σd∗
2

× χ−1
1− α

2 ,v
,

CLC(R)
pk

= Cpk,

LCLC(R)
pk

= dd2
3

×
{
1 − 1

d
× τ

(FN)
α
2

(μ∗
f , σ

∗2
f )

}
×

√
v

σd∗
2

× χ−1
α
2 ,v

.

(21)

Note that, since the control limits in Equation (21) involve unknown parameters, namely μ and σ ,
which are unobservable in practice, they are to be replaced by ¯̄X and R̄/d2, respectively. Accordingly,
the modified control limits of Cpk control chart, based on the information from the corresponding
X̄− R chart, will be

UCLĈ(R)
pk

= dd22
3d∗

2
×
⎧⎨
⎩1 − 1

d
× τ

(FN)

1−
α

2

(
μ̂

∗(R)

f , σ̂ ∗(R)2
f

)⎫⎬
⎭×

√
v

R̄
× χ−1

1−
α

2
,v
,

CLĈ(R)
pk

= Ĉ(R)

pk ,

LCLĈ(R)
pk

= dd22
3d∗

2
×
⎧⎨
⎩1 − 1

d
× τ

(FN)
α

2

(
μ̂

∗(R)

f , σ̂ ∗(R)2
f

)⎫⎬
⎭×

√
v

R̄
× χ−1

α

2
,v
,

(22)

where μ̂
∗(R)

f and σ̂
∗(R)2
f are obtained by replacing μ by ¯̄X and σ by R̄/d2 in Equations (6) and (7),

respectively.
In this context, Chatterjee and Chakraborty [39] have provided a simple algorithm to compute the

values of τ (FN)
α (.).

3.2. Process capability control chart of Cpk using X̄− S chart information

From Equation (16), Ĉ(S)
pk = (dc4/3){1 − | ¯̄X − M|/d} × 1/S̄. Also, S̄2/σ 2 ∼ 1/m(N − m)χ2

m(N−m)

(refer [23]), that is, S̄ ∼ σ/
√
m(N − m) × χm(N−m). Hence,

1 − α = P
[

σ√
m(N − m)

× χ1− α
2 ,m(N−m) ≤ S̄ ≤ σ√

m(N − m)
× χα

2 ,m(N−m)

]

= P
[√

m(N − m)

σ
× dc4

3
×
{
1 − 1

d
× τ

(FN)
α
2

(
μ∗
f , σ

∗2
f

)}
× χ−1

α
2 ,m(N−m)

≤ dc4
3

{
1 − | ¯̄X − M|

d

}
× 1

S̄
≤

√
m(N − m)

σ
× dc4

3

×
{
1 − 1

d
× τ

(FN)
1−α
2

(
μ∗
f , σ

∗2
f

)}
× χ−1

1− α
2 ,m(N−m)

]
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= P
[
dc4

√
m(N − m)

3σ
×
{
1 − 1

d
× τ

(FN)
α
2

(
μ∗
f , σ

∗2
f

)}
× χ−1

α
2 ,m(N−m)

≤ Ĉ(S)
pk

≤ dc4
√
m(N − m)

3σ
×
{
1 − 1

d
× τ

(FN)

1− α
2

(
μ∗
f , σ

∗2
f

)}
× χ−1

1− α
2 ,m(N−m)

]
from Equation (16).

(23)

Therefore, from Equation (23) and proceeding similar to Section 3.1, the control limits of Cpk
control chart, based on the information from the corresponding X̄− S chart, will be

UCLĈ(S)
pk

= dc24
√
m(N − m)

3S̄
×
{
1 − 1

d × τ
(FN)

1− α
2
(μ̂

∗(S)
f , σ̂ ∗(S)2

f )
}

× χ−1
1− α

2 ,m(N−m)
,

CLĈ(S)
pk

= Ĉ(S)
pk ,

LCLĈ(S)
pk

= dc24
√
m(N − m)

3S̄
×
{
1 − 1

d × τ
(FN)
α
2

(μ̂
∗(S)
f , σ̂ ∗(S)2

f )
}

× χ−1
α
2 ,m(N−m)

,

(24)

where μ̂
∗(S)
f and σ̂

∗(S)2
f are obtained by replacing μ by ¯̄X and σ by S̄/c4 in Equations (6) and (7),

respectively.
Thus, the operational procedure for the control chart of Cpk using X̄ − R and X̄ − S chart

information can be designed through the following steps:

Step 1: Draw random samples of size n fromm rational subgroups.
Step 2: Draw X̄ − R or X̄ − S chart from the data to check whether the process mean and dispersion

are under statistical control. The selection between R-chart and S-chart should be based on
the sample size. If n ≤ 9 R-chart should be drawn and if n ≥ 11, S-chart is preferable. For
n= 10, either of the two charts can be considered, although the decision should be based on
the knowledge of the process and past experiences.

Step 3: If the mean and the dispersion of the process are found to be statistically stable, draw Cpk
control chart using X̄ − R or X̄ − S chart, whichever was selected in Step 2.

Step 4: If in the Cpk control chart, all the points lie within the UCL and LCL, the process can be
considered as consistently capable throughout the entire production cycle and hence its
performance can be summarized through a single PCI value (vide equations (4) or (16),
whichever is applicable).

Step 5: If at least one point is below the LCL of Cpk control chart, the process cannot be consid-
ered as consistently capable. Although, any point above the UCL should generally indicate
towards extraordinarily good performance of the process at that point of production, this
phenomenon should be checked for possible assignable cause or computational error or any
such undesirable situations, before making such hopeful decision.
When the process is not consistently capable, its performance should not be summarized
through a single Cpk or any other PCI value.

3.3. β-Risk and average run length for Cpk control chart

β-risk and the corresponding average run length (ARL) are two of the most important performance
yardsticks of a control chart.

Let us assume that Cpk0 is a known specific value of Cpk and k′ is the change in Cpk0 value. Then,
from Equation (21), the β-risk for Cpk control chart, based on X̄ − R chart information, can be
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Table 4. β-Risk and ARL for Cpk control chart based on X̄ − R chart information.

Cpk0

k′ 1.00 1.20 1.40 1.60 1.80

0.1 0.1807(2) 0.2209(2) 0.2610(2) 0.3012(2) 0.3413(2)
02 0.1606(2) 0.2008(2) 0.2409(2) 0.2811(2) 0.3213(2)
0.3 0.1405(2) 0.1807(2) 0.2209(2) 0.2610(2) 0.3012(2)
0.4 0.1205(2) 0.1606(2) 0.2008(2) 0.2409(2) 0.2811(2)
0.5 0.1000(2) 0.1405(2) 0.1807(2) 0.2209(2) 0.2610(2)
0.6 0.0803(2) 0.1205(2) 0.1606(2) 0.2008(2) 0.2409(2)
0.7 0.0602(2) 0.1003(2) 0.1405(2) 0.1807(2) 0.2209(2)
0.8 0.0401(2) 0.0803(2) 0.1205(2) 0.1606(2) 0.2008(2)
0.9 0.0200(2) 0.0602(2) 0.1004(2) 0.1405(2) 0.1807(2)
1.00 0(1) 0.0401(2) 0.0803(2) 0.1205(2) 0.1606(2)

derived as

β = P[LCLC(R)
pk

≤ Ĉ(R)

pk ≤ UCLC(R)
pk

|Cpk = Cpk0 − k′], since Cpk is a higher the better type index

= P

⎡
⎣Ĉ(R)

pk ≤ d2
√

v

d∗
2

{
1 − |μ−M|

d

} × Cpk × χ−1
1−α/2,v ×

{
1 − 1

d
× τ

(FN)

1− α
2
(μ∗

f , σ
∗2
f )

}
|Cpk = Cpk0 − k′

⎤
⎦

− P

⎡
⎣Ĉ(R)

pk ≤ d2
√

v

d∗
2

{
1 − |μ−M|

d

} × Cpk × χ−1
α/2,v × {1 − 1

d
× τ

(FN)
α
2

(μf , σ ∗2
f )} |Cpk = Cpk0 − k′

⎤
⎦ . (25)

Similarly, from Equation (23), the β-risk for Cpk control chart, based on X̄ − S chart information,
can be derived as

β = P[LCLC(S)
pk

≤ Ĉ(S)
pk ≤ UCLC(S)

pk
|Cpk = Cpk0 − k′]

= P

[
Ĉ(S)
pk ≤ a × c4

1 − |μ−M|
d

× Cpk × χ−1
1−α/2,a2 ×

{
1 − 1

d
× τ

(FN)

1− α
2
(μ∗

f , σ
∗2
f )

}∣∣∣∣Cpk = Cpk0 − k′
]

− P

[
Ĉ(S)
pk ≤ a × c4

1 − |μ−M|
d

× Cpk × χ−1
α/2,a2 ×

{
1 − 1

d
× τ

(FN)
α
2

(μ∗
f , σ

∗2
f )

}∣∣∣∣Cpk = Cpk0 − k′
]
,

(26)

where a = √
m(N − m).

Thus, β-risk for Cpk chart depends upon the values of USL, LSL, μ, σ ,m and n.
For USL = 3.8 and LSL = 2.0, μ = 3 and σ = 0.2, n= 5 andm= 5, Tables 4 and 5 give the β and

ARL (within parentheses) values of Cpk control chart corresponding to different magnitudes of shift
in Cpk values using X̄ − R chart and X̄ − S chart information, respectively.

From Tables 4 and 5, following can be observed:

(1) For Cpk control chart using both X̄ − R chart and X̄ − S chart information, the β-risk increases
with the increase in Cpk0 value, for fixed k′.

(2) For Cpk control chart using both X̄ − R chart and X̄ − S chart information, the β-risk decreases
with the increase in k′ value, for a fixed Cpk0 value.

(3) For Cpk control chart using X̄ − R chart information, ARL is constant, namely 2, irrespective of
the changes in Cpk0 or k

′ values, except for Cpk0 = 1.00 and k′ = 1.0, for which, ARL is 1.
(4) From Table 4, all the β values are considerably small and consequently, the values of power are

considerably high, which is highly desirable. The low values of ARL are also indicating towards



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1037

Table 5. β-Risk and ARL for Cpk control chart based on X̄ − S chart information.

Cpk0

k′ 1.00 1.20 1.40 1.60 1.80

0.1 0.4890(2) 0.5977(3) 0.7063(4) 0.8150(6) 0.9237(14)
02 0.4346(2) 0.5433(3) 0.6520(3) 0.7607(5) 0.8693(8)
0.3 0.3803(2) 0.4889(2) 0.5977(3) 0.7063(4) 0.8150(6)
0.4 0.3260(2) 0.4347(2) 0.5433(3) 0.6520(3) 0.7607(5)
0.5 0.2717(2) 0.3803(2) 0.4889(2) 0.5977(3) 0.7063(4)
0.6 0.2173(2) 0.3260(2) 0.4347(2) 0.5433(3) 0.6520(3)
0.7 0.1630(2) 0.2717(2) 0.3803(2) 0.4890(2) 0.5977(2)
0.8 0.1087(2) 0.2173(2) 0.3260(2) 0.4347(2) 0.5433(3)
0.9 0.0543(2) 0.1630(2) 0.2717(2) 0.3803(2) 0.4890(2)
1.00 0(1) 0.1087(2) 0.2173(2) 0.3260(2) 0.4347(2)

the satisfactory performance of Cpk control chart using X̄ − R chart information for the given
values of USL, LSL, μ, σ ,m and n, to detect process shift.

(5) From Table 5, ARL increases with the increase in Cpk0 value, for fixed k′ and decreases with the
increase in k′ value, for a fixed Cpk0 value.

(6) For Cpk control chart using X̄ − S chart information, the β values are not quite small for small
values of Cpk0 and k′. However, for moderate to high values of k′, say k′ ≥ 0.6 and small values
of Cpk0 , namely Cpk0 ≤ 1.20, the β values are quite small.
Thus, as can be observed fromTable 5,Cpk control chart using X̄ − S chart information performs
better for small Cpk0 values and for moderate to large process shifts.

(7) From Table 4, Cpk control chart using X̄ − R chart information performs satisfactorily (in terms
of β value) for almost all values of k′ and for allCpk0 values, except the combinationsCpk0 ≥ 1.60
and k′ = k′ ≥ 0.7, that is, when the values of both Cpk0 and k′ are considerably high.

Note that, although Tables 4 and 5 are generated for specific values of USL, LSL,μ, σ ,m and n, the
observations which are enlisted above are true for other combinations of these parameters as well.
Thus, Tables 4 and 5 are, in some sense, indicative of the nature of β-risk and ARL of Cpk control
chart.

3.4. Confidence intervals of the plug-in estimators of Cpk based on the control chart
information

We have already discussed about the control limits of the plug-in estimators of Cpk, based on ¯̄X − R
and ¯̄X − S chart information. Since these control limits are, by definition, probability limits at α level
of significance, these can be used as confidence intervals of Cpk as well.

Thus, for Ĉ(R)

pk , the 100(1 − α)% confidence interval will be [LCLĈ(R)
pk
, UCLĈ(R)

pk
], when

¯̄X − R chart information is used. Similarly, for Ĉ(S)
pk , the 100(1 − α)% confidence interval will be

[LCLĈ(S)
pk
, UCLĈ(S)

pk
], when ¯̄X − S chart information is used.

3.5. Comparison of the proposed Cpk control charts with the existing ones

We are now in a position to compare the performance of our newly proposed Cpk control charts with
the existing ones.
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4. A simulation study

We shall now carry out a simulation study to strengthen the theory developed in this article.
Let us consider a hypothetical process for which the underlying distribution of the concerned

quality characteristic is normal withμ = 3 and σ = 0.2. Suppose from each of 10 rational subgroups
of the said process, a random sample of size 5 is drawn. Thus, herem= 10 andn= 5 and henceN= 50.
Therefore, X̄ − R chart will be appropriate here to check the stability of the process. From the X̄ chart
and R chart of this simulated data (vide Figures 1 and 2, respectively), it is observed that the process
is statistically under control.

Suppose for the concerned quality characteristic, USL = 3.8 and LSL = 2.0. Thus, d= 0.9 and
M= 2.9. For n= 5, d2 = 2.326 and d3 = 0.864. Hence, d∗

2 = 2.3398 and v = 36.4861 � 36. From

Figure 1. X̄ chart for the data of Example 3.

Figure 2. R chart for the data of Example 3.
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Figure 3. Cpk control chart using X̄− R chart information based on data of Section 4.

the data, ¯̄X = 3.0164, R̄ = 0.4359 and hence σ̂ = 0.1874. Also, μ̂∗(R)

f = 0.1164 and σ̂
∗(R)2
f = 0.0007.

Hence, Ĉ(R)

pk = 1.3937.
We shall now investigate whether it is adequate to summarize the process capability merely based

on a single valued estimated PCI like Ĉ(R)

pk . For this, we need to use process capability control chart

of Cpk. Following Chatterjee and Chakraborty [39], τ (FN)
0.975 = 0.00713 and τ

(FN)
0.025 = 0.486. Hence, for

α = 0.05, that is, at 5% level of significance, fromEquation (22) we have, UCLĈ(R)
pk

= 2.0467, CLĈ(R)
pk

=
1.3937 and LCLĈ(R)

pk
= 0.5960.

The corresponding Cpk control chart is given in Figure 3.
From Figure 3, it is easy to observe that, none of the estimated Cpk values for the individual sub-

groups lie beyond LCLĈ(R)
pk

or UCLĈ(R)
pk
. Hence, apart from being statistically stable, the process can

also be expected to perform consistently. Therefore its capability can truly be summarized through
Ĉ(R)

pk = 1.3937, which indicates towards the satisfactory performance of the process.
Let us now consider the same process with, that is, withUSL = 3.8 and LSL = 2.0. Table 6 contains

the UCL, CL and LCL values for various combinations of μ, σ , n andm.
Note that, unlike the simulated example, the values of theUCLCL andLCL are computed inTable 6

assuming that the actual values of μ and σ are known and hence the UCL, CL and LCL values in the
simulated example and those in the table differ for n= 5 andm= 10.

The following observations can be made from Table 6:

(1) For fixed n, value of UCL decreases and LCL increases with the increase inm. Consequently, the
span between UCL and LCL decreases making the control limits more stringent. The same thing
is true for fixedm and varying n as well.

(2) Since, CL = Cpk and this is a function ofμ, σ , USL and LSL, providedμ and σ values are known,
the values of CL remain fixed for each set of (μ, σ), whatever be the value ofm and n.

(3) For fixed σ , if μ decreases, the UCL and LCL values decrease with the increase inm and n.
(4) For fixed μ, if σ decreases, the UCL and LCL values decrease with the increase inm and n.
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Table 6. Table showing values of UCL, CL and LCL for various combinations ofμ, σ , n andm.

n m UCL CL LCL

Forμ = 3, σ = 0.2
3 5 4.5371 1.3333 0.4535
3 10 3.7059 1.3333 0.5027
3 15 3.4178 1.3333 0.5277
3 20 3.2645 1.3333 0.5436
5 5 5.0950 1.3333 0.5027
5 10 4.4873 1.3333 0.5436
5 15 4.2583 1.3333 0.5636
5 20 4.1319 1.3333 0.5763
9 5 5.7897 1.3333 0.5401
9 10 5.3123 1.3333 0.5735
9 15 5.1236 1.3333 0.5895
9 20 5.0170 1.3333 0.5994
Forμ = 2.6, σ = 0.2
3 5 4.4754 1.0 0.2340
3 10 3.6556 1.0 0.2595
3 15 3.3714 1.0 0.2724
3 20 3.2201 1.0 0.2806
5 5 5.0258 1.0 0.2595
5 10 4.4263 1.0 0.2806
5 15 4.2005 1.0 0.2909
5 20 4.0758 1.0 0.2974
9 5 5.7110 1.0 0.2788
9 10 5.2402 1.0 0.2960
9 15 5.0540 1.0 0.3042
9 20 4.9488 1.0 0.3094
Forμ = 3, σ = 0.4
3 5 2.2537 0.6667 0
3 10 1.8409 0.6667 0
3 15 1.6978 0.6667 0
3 20 1.6216 0.6667 0
5 5 2.5309 0.6667 0
5 10 2.2290 0.6667 0
5 15 2.1153 0.6667 0
5 20 2.0525 0.6667 0
9 5 2.8760 0.6667 0
9 10 2.6388 0.6667 0
9 15 2.5451 0.6667 0
9 20 2.4921 0.6667 0

(5) In particular, for μ = 3 and σ = 0.4, with the same USL and LSL as before, the LCL value will
always be negative, whatever be the value of m and n and hence we shall consider LCL as zero,
since by convention PCIs are non-negative.

5. Applications

We are now in a position to discuss some numerical examples to supplement the theory developed
so far in the present article.

5.1. Example 1

In the present example, we consider the data pertaining to a forging process which produces piston
rings for an automotive engine. The inside diameter of a forged piston ring is the quality characteristic
under consideration. These data have been already discussed by Lin and Sheen [7], while discussing
the performance of a Bayesian-like estimator of Cpk based on control chart data.

The data set consists of 25 subgroups, each having 5 sample observations. Thus, m= 25, n= 5
and hence N = 125. The USL and LSL of the inside diameters of the forged piston rings are 74.00 ±
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0.05mm, that is, USL = 74.05 and LSL = 73.95. Thus, d= 0.05 andM= 74.0. Now, followingMont-
gomery [22], for n= 5, d2 = 2.326, d3 = 0.864. Hence, d∗

2 = 2.3315 and v = 90.8438 ≈ 91. The X̄
and R control charts corresponding to the present data are given in Figures 4 and 5.

From these figures, it is evident that, the process can be considered to be statistically in control.
From the data, ¯̄X = 74.0012, R̄ = 0.02324 and hence σ̂ = 0.01. Thus, from Equations (6) and (7),
μ̂

∗(R)

f = 0.001 and σ̂
∗(R)2
f = 0.0000006. Hence, from the given data, Ĉ(R)

pk = 1.6289.
Now, from Table 1, for m= 25 and n= 5, f (R)(m, n) = 1.0056 and from Table 2, for N = 125

and | ¯̄X − M| × d2/R̄ = 0.12, bias(R)
2 = −0.0081.Hence, fromEquation (12), biasCpk(Ĉ

(R)

pk ) = 0.0066,
which is quite small.

Figure 4. X̄ chart for the data of Example 1.

Figure 5. R chart for the data of Example 1.
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Interestingly, following Lin and Sheen [7], the estimated value of Cpk, namely Ĉpk(R) is 1.63, which
is very close to Ĉ(R)

pk . However, unlike Ĉpk(R), we do not have to rely on any prior information for com-

puting Ĉ(R)

pk . This strongly argues in favour of classical estimation (using control chart information)
of Cpk rather than Bayesian or Bayesian-like estimation. This is somewhat similar to the observation
made by Pearn et al. [21], who also have advocated the application of classical method to evaluate
process capability, rather than using Bayesian approach, in the context of the lower control bound
of Cpk.

Although, both Ĉ(R)

pk and Ĉpk(R) indicate towards the satisfactory performance of the forging pro-
cess, we shall now investigate whether it is adequate to summarize the process capabilitymerely based
on a single valued estimated PCI like Ĉ(R)

pk . For this, we need to use process capability control chart

of Cpk. Now, following Chatterjee and Chakraborty [39], τ (FN)
0.975 = 0.0003154 and τ

(FN)
0.025 = 0.02255.

Hence, at α = 0.05 level of significance, from Equation (22) we have, UCLĈ(R)
pk

= 1.9347, CLĈ(R)
pk

=
1.6289 and LCLĈ(R)

pk
= 0.7979. The corresponding Cpk control chart is given in Figure 6.

Here, it can be observed that, none of the estimated Cpk values for the individual subgroups lie
below LCLĈ(R)

pk
, while, for 8 out 25 subgroups, the estimated Cpk values lie above UCLĈ(R)

pk
. Although,

PCIs being of higher the better type, exceeding UCLĈ(R)
pk

cannot be considered as a setback of the

process (refer [23,25] ); the Ĉ(R)

pk values vary highly from subgroup to subgroup, the maximum being
4.2837 (corresponding to the subgroup no. 11) and the minimum being 0.7992 (corresponding to
the subgroup no. 14). These indicate towards the highly volatile performance of the process from
sample to sample. In this scenario, summarizing the process capability through a single value like Ĉ(R)

pk
will merely average out the ups and downs of the capability of the process over various subgroups.
Hence, although Ĉ(R)

pk = 1.6289 seems to indicate towards the satisfactory performance of the forging

process, in reality the process performance is highly volatile and hence summarizing it through Ĉ(R)

pk
is not solicited.

Figure 6. Cpk control chart using X̄− R chart information based on data of Example 1.
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This also indicates that, despite being under statistical control (as reflected by Figures 4 and 5), the
performance of the process is not consistent. Therefore, similar to the observationmade byChatterjee
and Chakraborty [23], in the current example, statistical stability does not ensure consistency in the
process performance.

5.2. Example 2

In this example, we consider the data which was used earlier by Spiring [25]. Here we have 20 sub-
groups each having measurements of the concerned quality characteristic for 10 sample units with
USL = 1.2 and LSL = 0.8. Thus,m= 20, n= 10,N = 200, d= 0.2,M= 1.0. From the X̄ chart, R-chart
and S-chart for the present data set, it is observed that the process is under statistical control (refer
[25]).

Since here n= 10, we shall compare the performances of both Ĉ(R)

pk and Ĉ(S)
pk and the corresponding

process capability control charts.

5.2.1. Using X̄− R chart information.
For n= 10, d2 = 3.0775 and d3 = 0.7971 (refer [22]) and hence, d∗

2 = 3.0816 and v = 149.3128 ≈

149. From the data, ¯̄X = 1.12055 and R̄ = 0.348. Hence, Ĉ(R)

pk = 0.2342.
Now, from Table 1, for m= 20 and n= 10, f (R)(m, n) = 1.0034 and from Table 2, for N = 200

and | ¯̄X − M| × d2/R̄ = 1.07, bias(R)
2 = −0.0036.Hence, fromEquation (12), biasCpk(Ĉ

(R)

pk ) = 0.0008,
which is quite small.

Since Ĉ(R)

pk = 0.2342 is quite small as compared to the stipulated threshold value 1 (refer [2]), it
is logical to conclude that the process is incapable of producing items within the given specification
limits.

We shall now investigate whether it is adequate to summarize the process capability merely
based on Ĉ(R)

pk . For this, we need to use process capability control chart of Cpk. Using Equa-

tions (6) and (7), μ̂∗
f = 0.12055 and σ̂ ∗2

f = 0.00006. Also, following [39], τ
(FN)
0.975 = 0.34224 and

τ
(FN)
0.025 = 0.00626. Hence, at α = 0.05 level of significance, from Equation (22) we have, UCLĈ(R)

pk
=

0.6433, CLĈ(R)
pk

= 0.2342 and LCLĈ(R)
pk

= −0.3761 ≈ 0. The corresponding Cpk control chart is given

in Figure 7.
Here, it can be observed that, none of the Ĉ(R)

pk values for the individual subgroups lie below
LCLĈ(R)

pk
; while only one such value lies above the UCLĈ(R)

pk
. There is also no drastic variation in the

values of Ĉ(R)

pk from one subgroup to another, the minimum Ĉ(R)

pk being 0.0405 (corresponding to sub-
group no. 12) and the maximum being 0.7829 (corresponding to subgroup no. 19). Therefore, it is
logical to expect that the performance of the process is consistent over various subgroups and hence,
Ĉ(R)

pk = 0.2342 can be aptly considered to represent the estimated process capability.
Interestingly, despite having consistency in performance, the process fails to perform satisfactorily,

as has been reflected by the very low value of Ĉ(R)

pk . In fact, based on the available data, it has been
observed that, under the present process centring and dispersion scenario, the UCLĈ(R)

pk
is 0.6433,

which itself is quite low, as compared to the stipulated threshold value 1 (refer [2]).

5.2.2. Using X̄− S chart information.
For n= 10, c4 = 0.9727 (refer [22]). Also, from the data, ¯̄X = 1.12055 and S̄ = 0.1094. Hence, Ĉ(S)

pk =
0.2347.
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Figure 7. Cpk control chart using X̄− R chart information based on data of Example 2.

Now, from Table 3, for m= 20 and n= 10, f (R)(m, n) ≈ 1.00 and from Table 2, for N = 200 and
| ¯̄X − M| × d2/R̄ = 1.07, bias(R)

2 ≈ 0. Hence, from Equation (19), biasCpk(Ĉ
(S)
pk ) ≈ 0. Therefore, for

the present data set, Ĉ(S)
pk performs better than Ĉ(R)

pk .

Since Ĉ(S)
pk = 0.2347 is quite small as compared to the stipulated threshold value 1 (refer [2]), sim-

ilar to the case of Ĉ(R)

pk , here also it is logical to conclude that the process is incapable of producing
items within the given specification limits.

To check the adequacy of Ĉ(S)
pk to summarize the overall process performance, we shall now

consider process capability control chart of Cpk based on X̄− S chart information. Here, τ
(FN)
0.975 =

0.34103 and τ
(FN)
0.025 = 0.00626 (refer [39]). Hence, from Equation (24), we have, UCLĈ(S)

pk
= 0.5717,

CLĈ(S)
pk

= 0.2347 and LCLĈ(S)
pk

= −0.3974 ≈ 0. The corresponding Cpk control chart is given in

Figure 8.
Similar to Figure 7, here also it can be observed that, none of the Ĉ(S)

pk values for the individual
subgroups lie below LCLĈ(S)

pk
; while only one such value lies above theUCLĈ(S)

pk
. There is also no drastic

variation in the values of Ĉ(S)
pk from one subgroup to another. Therefore, it is logical to expect that the

performance of the process is consistent over various subgroups and hence, Ĉ(S)
pk = 0.2347 can be

aptly considered to represent the estimated process capability. Moreover, under the present process
centring and dispersion scenario, UCLĈ(S)

pk
is 0.5717, which itself is quite low, as compared to the

stipulated threshold value 1 (refer [2]).
From both Figures 7 and 8, it is evident that only one estimatedCpk value is above the correspond-

ing UCL. This cannot be considered as a setback of a process, as PCIs are in general larger the better
type, though proper investigation is required before considering this high value as a benchmark (refer
[25]). Also, none of the estimatedCpk values lie below the corresponding LCL, which is also indicating
towards the consistency of the process performance.

Finally, although, both Ĉ(R)

pk , Ĉ(S)
pk and the associated Cpk draw similar conclusions regarding the

process performance, Ĉ(S)
pk is almost unbiased for Cpk, while Ĉ

(R)

pk induces slight positive bias. Hence

the use of Ĉ(S)
pk is advocated for the present data set. Infact, for n= 10, the relative efficiency of R over S,
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Figure 8. Cpk control chart using X̄− S chart information based on data of Example 2.

as ameasure of dispersion, is 0.850 and it decreases further as n increases (refer [22]). This also argues
in favour of using X̄− S chart information, rather than that of X̄− R chart, in the present scenario.

6. Conclusion

In the present article, we have proposed natural (plug-in) estimators of Cpk based on X̄− R chart and
X̄− S chart information. We have derived the expressions for the expected values of these estimators
and the associated bias.We have also designed the corresponding process capability control charts for
the purpose of continual assessment of the process performance. It has been observed that classical
estimation of Cpk based on X̄− R chart and X̄− S chart information performs better than its Bayesian
counterpart. Hence, in practice, for process capability assessment, application of classical approach,
which does not require to rely on any historical data, is advocated. Pearn et al. [21] have also made
similar observations in the context of lower bound ofCpk. It has also been observed that, single valued
assessment of process capability is not always adequate to summarize the overall capability of a process
and one may have to take refuge to the corresponding process capability control chart.

Two real-life examples and a simulated example have been discussed that reveal the following three
different situations which may be encountered in practice:

(1) In case of the forging process, discussed in Example 1 of Section 5, although the process is statis-
tically stable, the Cpk chart reveals that 8 out of 25 subgroup level observed Cpk values lie above
the UCL, while none of the observed Cpk values lie below LCL. Thus, despite of the fact that, the
process is maintaining at least a minimum level of capability, its performance is highly volatile
and hence should not be summarized through a single Cpk value.

(2) In example 2 of Section 5, only one subgroup level observed Cpk value lie above the UCL,
while none lie below the LCL. Since unlike Example 1, here no drastic variation is visible in
the observed Cpk values from subgroup to subgroup, the process can be considered to be con-
sistently performing apart from being statistically stable. Hence, its capability can very well be
summarized through a single Cpk value.

(3) For the simulated process, discussed in Section 4, none of the subgroup level observed Cpk lie
beyond either of the control limits. Therefore, the process is statistically stable and consistently
capable and hence its performance can be summarized through single Cpk value.
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Through numerical examples, it has also been established that for higher sample size, say n ≥ 10,
estimation of Cpk, based on X̄− S chart information performs better than that based on X̄− R chart
information.

Finally, apart from the point and interval estimation ofCpk, the corresponding testing of hypothesis
is also useful from practical viewpoint. This will require derivation of the expression for the statistical
distribution of the plug-in estimator of Cpk, based on X̄− R or X̄− S chart information and can be
considered as an interesting problem to study in future.

Following are some of the salient features of the theory developed in this article:

(1) Since the statistical distribution of the plug-in estimator of Cpk is complicated, very few studies
are available in the literature regarding the associated bias. In the present article, a thorough study
has been done in this regard and it has been observed that for sufficiently large sample size, the
proposed estimators of Cpk has very insignificant amount of bias.

(2) The earlier discussions on the estimation ofCpk using subsample informationmostly considered
Bayesian perspective [29].However, often the necessary information for such study is unavailable
due to various reasons like lack of infrastructure to store such data, ignorance among the com-
petent authority and so on.The plug-in estimator of Cpk defined in this article does not require
such information and hence is more robust from this perspective.

(3) Till now, very few research article are available in the literature regarding process capability con-
trol chart of Cpk and hence the proposed charts can be used for continual assessment of the
process performance.

(4) The expressions for β-risk and ARL are discussed for practical implementation.

Disclosure statement
No potential conflict of interest was reported by the author.

References
[1] Kotz S, Johnson N. Process capability indices – a review, 1992–2000. J Qual Technol. 2002;34(1):2–19.
[2] Pearn WL, Kotz S. Encyclopedia and handbook of process capability indices – series on quality, reliability and

engineering statistics. Singapore: World Scientific; 2007.
[3] Lin GH, Pearn WL. Distributions of the estimated process capability index Cpk. Econ Qual Control.

2003;18(2):263–279.
[4] Novoa C, Leon NA. On the distribution of the usual estimator of Cpk and some applications in SPC. Qual Eng.

2009;21(1):24–32.
[5] Chen S-M, Hsu Y-S. Uniformly most powerful test for process capability index Cpk. Qual Technol QuantManage.

2004;1(2):257–269.
[6] Lin H-C. Using normal approximation for calculating the p-value in assessing process capability index Cpk. Int J

Adv Manuf Technol. 2005;25:160–166.
[7] Lin HC, Sheen GJ. Practical implementation of the capability indexCpk based on the control chart data. Qual Eng.

2005;17(3):371–390.
[8] Lin HC, Sheen GJ. An approximation approach for making decisions in assessing the capability index Cpk from

the subsamples. Commun Stat Simul Comput. 2005;34(1):191–202.
[9] Aslam M, Azam M, Jun C-H. A mixed repetitive sampling plan based on process capability index. Appl Math

Model. 2013;37(24):10027–10035.
[10] AslamM,Wu C-W, AzamM, et al. Variable sampling inspection for resubmitted lots based on process capability

index Cpk for normally distributed items. Appl Math Model. 2013;37(3):667–675.
[11] Aslam M, Wu C-W, Jun C-H, et al. Developing a variables repetitive group sampling plan based on process

capability index Cpk with unknown mean and variance. J Stat Comput Simul. 2013;83(8):1507–1517.
[12] Negrin I, Parmet Y, Schechtman E. Developing a sampling plan based on Cpk− unknown variance. Qual Reliab

Eng Int. 2011;27:3–14.
[13] Seifi S, Nezad MSF. Variable sampling plan for resubmitted lots based on process capability index and Bayesian

approach. Int J Adv Manuf Technol. 2016. DOI:10.1007/s00170-016-8958-9
[14] Wu C-W, Aslam M, Jun C-H. Variables sampling inspection scheme for resubmitted lots based on the process

capability index Cpk. Eur J Oper Res. 2012;217:560–566.

http://dx.doi.org/10.1007/s00170-016-8958-9


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1047

[15] Pearn WL, Wu CH. A close form solution for the product acceptance determination based on the popular index
Cpk. Qual Reliab Eng Int. 2013;29:719–723.

[16] Pearn WL, Liao MY. Measuring process capability based on Cpk with gauge measurement errors. Microelectron
Reliab. 2005;45:739–751.

[17] Pearn WL, Chen KS. A Bayesian-like estimator of Cpk. Comm Statist Simulation Comput. 1996;25(2):321–329.
[18] PearnWL,ChenKS.Apractical implementation of the process capability indexCpk. Qual Eng. 1997;9(4):372–383.
[19] Pearn WL, Wu CW. Process capability assessment for index Cpk based on Bayesian approach. Metrika.

2005;61:221–234.
[20] Kargar M, Mashinchi M, Parchami A. A Bayesian approach to capability testing based on Cpk with multiple

samples. Qual Reliab Eng Int. 2014;30(5):615–621.
[21] PearnWL,WuCC,WuCH. Estimating process capability indexCpk: classical approach versus Bayesian approach.

J Stat Comput Simul. 2015;85:2007–2021.
[22] Montgomery DC. Introduction to statistical quality control. 5th ed. New York (NY): John Wiley & Sons; 2000.
[23] ChatterjeeM,ChakrabortyAK.Distributions and process capability control charts ofCpu andCpl using sub-group

information. Comm Statist Theory Methods. 2015;44:4333–4353.
[24] Chatterjee M, Chakraborty AK. Some process capability indices for unilateral specification limits – their proper-

ties and the process capability control charts. Comm Statist Theory Methods. 2016;45:7130–7160.
[25] Spiring FA. Process capability: a total quality management tool. Total Qual Manage. 1995;6(1):21–34.
[26] Boyles RA. The Taguchi capability index. J Qual Technol. 1991;23(1):17–26.
[27] Spiring FA. A process capability/customer satisfaction approach to short-run processes. Qual Reliab Eng Int.

2008;24:467–483.
[28] Kuo H-L. Approximate tolerance limits for Cp capability chart based on range. ProbStat Forum. 2010;3:145–157.
[29] Leung BPK, Spiring F. Adjusted action limits for Cpm based on departures from normality. Int J Prod Econ.

2007;107:237–249.
[30] Kuo H-L, Wu C-C, Wu C-H. Approximate confidence bounds for the process capability index Cpm based on the

range. Inform Manage Sci. 2006;17(2):57–70.
[31] Morita M, Arizono I, Nakase I, et al. Economical operation of the Cpm control chart for monitoring process

capability index. Int J Adv Manuf Technol. 2009;43:304–311.
[32] WuH-H. Using target costing concept in loss function and process capability indices to set up goal control limits.

Int J Adv Manuf Technol. 2004;24:206–213.
[33] WuC-W. An alternative approach to test process capability for unilateral specification with subsamples. Int J Prod

Res. 2007;45(22):5397–5415.
[34] Wu C-W. Assessing process capability based on Bayesian approach with subsamples. European J Oper Res.

2008;184(1):207–228.
[35] Lord E. The use of range in place of standard deviation in the t-test. Biometrika. 1947;41(1):41–67.
[36] Leone FC, Nelson LS, Nottingham RB. The folded normal distribution. Technometrics. 1961;3(4):543–550.
[37] Woodall WH, Montgomery DC. Using ranges to estimate variability. Qual Eng. 2000;13(2):211–217.
[38] Vannman K. A unified approach to capability indices. Statist Sin. 1995;5(2):805–820.
[39] Chatterjee M, Chakraborty AK. A simple algorithm for calculating values for folded normal distribution. J Stat

Comput Simul. 2016;86(2):293–305.


	1. Introduction
	2. Estimation of Cpk based on  - R and  - S chart information and theassociated bias
	2.1. Plug-in estimator of Cpk based on  - R chart information and the corresponding expectation
	2.2. Bias in estimating Cpk with  -  R chart information
	2.3. Plug-in estimator of Cpk based on  - S chart information and the corresponding expectations
	2.4. Bias in estimating Cpk with  - S chart information

	3. Process capability control charts of Cpk
	3.1. Process capability control chart of Cpk using  - R chart information
	3.2. Process capability control chart of Cpk using - S chart information
	3.3. -Risk and average run length for Cpk control chart
	3.4. Confidence intervals of the plug-in estimators of Cpk based on the control chart information
	3.5. Comparison of the proposed Cpk control charts with the existing ones

	4. A simulation study
	5. Applications
	5.1. Example 1
	5.2. Example 2
	5.2.1. Using  - R chart information.
	5.2.2. Using  - S chart information.


	6. Conclusion
	Disclosure statement
	References

