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Distributions and Process Capability Control Charts
for CPU and CP L Using Subgroup Information

MOUTUSHI CHATTERJEE AND ASHIS KUMAR
CHAKRABORTY

SQC & OR Unit, Indian Statistical Institute, Kolkata, India

Process capability analysis is a very well-known and widely accepted method of assess-
ing the ability of a process to produce items within pre-assigned specification limits.
Most of the process capability indices (PCI) available in literature are formulated in
terms of the parameters of the concerned quality characteristics. However, since the
actual values of these parameters are often unknown, their estimated values are used to
evaluate the estimated capability of a process. One such estimation procedure may be
to use the estimates of these parameters obtained from the corresponding control charts
used to check the stability of the said process. In this article, we used this approach to
redefine plug-in (natural) estimators of the two most famous PCI’s for unilateral speci-
fication limits viz., CPU and CPL. We formulated the corresponding unbiased estimators
and uniformly minimum variance unbiased estimators (UMVUE), wherever possible,
and their distributions as well. We also designed the process capability control charts
of CPU and CPL based on these UMVUEs. For constructing these control charts, we
used the estimators of the parameters of the quality characteristics as obtained from
the corresponding X − S and X − R charts. These charts can be used to check the
consistency of capability of a process and also to keep a constant vigil on the process.
Two numerical examples have been discussed and it has been observed that our pro-
posed process capability control charts are more efficient to detect changes in process
capability than those already available in literature.

Keywords Control chart; Process capability index; Subgroup estimate; Uniformly
minimum unbiased estimator (UMVUE); Unbiased estimator; Unilateral specification
limits.

Mathematics Subject Clssification 62E15; 62F10; 62F25.

1. Introduction

In today’s highly competitive market, importance of the correct assessment of the capability
of a process to produce items within the pre-assigned specification limits is increasing
day by day. Process capability analysis is the most used statistical quality control (SQC)
methodology which is applied to carry out such assessment, especially in manufacturing
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processes. Such analysis is generally done through process capability indices (PCI). A PCI
measures the ability of a process to produce what it is supposed to produce.

Suppose that U and L denote the upper specification limit (USL) and lower specification
limit (LSL), respectively, of a quality characteristic. Although most of the PCI’s available in
literature are designed for processes with bi-lateral specification limits, i.e., processes where
the concerned quality characteristic has a USL and a LSL, it is often seen that the design
intent of a manufactured product provides information on either of USL or LSL. This is true
for quality characteristics of either smaller the better type (e.g., surface roughness, flatness,
degree of radiation, tool wear, etc.) or larger the better type (tensile strength, compressive
strength, etc.). This necessitates the use of PCIs especially designed for processes with
unilateral specifications. Most of the research works on PCIs for unilateral specification
limits available in literature are based on CPU and CPL which are defined as follows:

CPU = U − μ

3σ

and CPL = μ − L

3σ

⎫⎪⎬⎪⎭ . (1)

Chatterjee and Chakraborty (2012) made an extensive review of the PCIs for unilateral
specification limits.

Often, PCIs are expressed in terms of the corresponding parameters (e.g., μ, σ ) of
the concerned quality characteristics. Since actual values of these parameters are mostly
unknown, the values of the PCIs are also often unobservable and this necessitates the
estimation of the PCI values for all practical purposes. In a majority of cases, capability of a
process is measured by taking a single sample at some point of time. Thus, let “X” denote the
quality characteristic under consideration such that X ∼ N (μ, σ 2). Also, suppose, a sample
of size “n” is taken from the process. Then, X = 1

n

∑n
i=1 Xi and S2 = 1

n−1

∑n
i=1(Xi − X)2

denote the sample average and sample variance respectively. Usually, the plug-in estimators
of the PCIs, are defined by replacing μ and σ 2 by X and S2, respectively. Thus, from
Eq. (1), the plug-in estimators of CPU and CPL will be ĈPU = U−X

3S
and ĈPL = X−L

3S

and their properties have been studied by Pearn and Chen (2002). Later, Shu et al. (2006)
redefined the plug-in estimators of CPU and CPL for the cases where, μ and σ are replaced
by the information obtained from multiple samples of various sizes and have studied the
properties of those estimators as well.

Before computing capability value of a process, one needs to establish stability of
the process using suitable control charts as the PCI value of an unstable process is hardly
reliable (Kotz and Johnson, 1993, 2002). Spiring (1995) argued for defining the plug-in
estimators of PCIs based on the estimators of the parameters of the concerned quality
characteristics as obtained from the respective control charts. Since these estimators are
based on the information of a stable process, they are likely to be more robust with respect
to sampling fluctuation. Spiring (1995) defined such estimators for Cpm = d

3
√

σ 2+(μ−T )2
—

a well-known PCI for bi-lateral specification limits. In this article, we used this approach
to re-define plug-in estimators of CPU and CPL. We also studied the underlying statistical
distributions of these estimators and have found their unbiased estimators and UMVUEs
(where ever applicable).

However, the usual approach of such “one shot estimation” of the capability of a
process suffers from a number of drawbacks which are listed below.

1. A process, as the name suggests, is an on-going activity and hence the PCI value at
a single point of time may not necessarily represent the overall capability scenario of
a process (see Spiring, 1995). Even the usual estimation procedure based on multiple
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samples (see Shu et al., 2006) is not appropriate as that may smooth-out some important
fluctuations in the process and as a result, some serious problems in the process may be
overlooked. In fact, one challenging problem for the production engineer is to identify
when to measure the capability of a process.

2. Spiring (1995) has also observed that “one shot” estimation of the capability of a process
requires considerably large sample size (at least 50).

3. Once the stability of a process is established, estimates of the parameters of the quality
characteristics can be obtained from the same control charts. However, these estimates
are never used in the subsequent stages—rather, while computing PCIs, same parameters
are estimated again based on one or more newly drawn samples. This sampling strategy
makes the estimation procedure uneconomical and the situation worsens for processes
requiring destructive tests or where, the cost of sampling is exorbitant.

To address these problems, Spiring (1995) used a fusion of the control chart techniques
and the process capability analysis. The concept of process capability control chart was
originally proposed by Boyles (1991) who designed a control chart for Cpm to observe
variation in the observed Cpm values over the samples due to sampling fluctuation as well
as due to various assignable causes. Later, Spiring (1995) modified this Cpm control chart
by using the estimators Cpm based on the information already gathered by the control charts
while checking stability of the process. This procedure is suitable for continuous monitoring
of the performance of a process as it instantly reflects any change in the process prompting
quick action from the concerned authority and eventually increases the quality level of the
process and this makes it more economical. Moreover, process capability control charts
require lesser sample size also (see Spiring, 1995) as compared to the so called “one shot”
estimation of the process capability.

Despite providing such an useful methodology for continuous assessment of a process,
Spiring’s (1995) approach suffers from a basic problem which needs to be addressed. Based
on our earlier discussion, the plug-in estimators of Cpm can be defined in the following two
ways:

1. Ĉ∗
pm = d

3
√

(S2+(X−T )2)2
, which is the usual plug-in estimator of Cpm; and

2. Ĉ(S)
pm = d

3

√
( S

c4
)2+(X−T )2

or Ĉ(R)
pm = d

3

√
( R

d2
)2+(X−T )2

, depending on whether the parameters

are estimated using information X − S chart or X − R chart, respectively.

Spiring (1995), while designing the control chart of Cpm, took the distribution of Ĉ∗
pm into

account, while in the final expressions of the control limits, he recommended to replace
Cpm by Ĉ(S)

pm or Ĉ(R)
pm depending on the situation. This generates a conflict as the distribution

is for single sample information while, both of Ĉ(S)
pm and Ĉ(R)

pm are based on multiple samples.
As a result, the contribution of the number of subgroups (m) were never reflected in the
corresponding statistical distribution. Therefore, Spiring’s (1995) approach of constructing
the estimated control limits of the process capability control chart needs some modification.

Again, Chen et al. (2007) designed process capability control charts for CPU and CPL

as follows:

UCL = bn−1

3
√

n
× tn−1,1−α/2(n − 1, δ = 3

√
n CI )

CL = CI

LCL = bn−1

3
√

n
× tn−1,α/2(n − 1, δ = 3

√
n CI )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2)
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where CI stands for CPU or CPL, whichever is applicable, depending on the situation and
tn−1(δ) denotes the noncentral t distribution with (n − 1) degrees of freedom and non-
centrality parameter δ. These control charts also suffer from similar problem as those of
Spiring (1995).

In this article, we redefined the estimators of CI based on information from both the
X − S and X − R control charts. We also showed that the changes in the formulations of
the estimators of CI , due to the use of information gathered from the respective X − S

or X − R control charts, indeed change the underlying statistical distribution (through the
corresponding degrees of freedom) of these newly developed estimators and consequently,
the control limits in Eq. (2) get changed as well.

In the next section, a brief review is done on the literature of control charts and various
types of estimators of CPU and CPL along with their distributional aspects. A list of notations
used in the succeeding chapters are enlisted in Sec. 3. The statistical distributions, unbiased
estimators and the UMVUEs (wherever available) of the estimators of CPU and CPL, based
on the information from the corresponding X − R and X − S charts, are formulated in
Sec. 4. In Sec. 5, the corresponding process capability control charts are designed along
with a brief discussion on the expressions for their operating characteristic (OC) curves,
α and β risks and average run lengths (ARL). Two numerical examples are discussed in
Sec. 6 to make a comparative study of the performances of the newly designed control
charts with respect to Chen et al.’s (2007) control chart given in Eq. (2). Finally, the article
concludes in Sec. 7 with a general note on the topics discussed in this article.

2. A Brief Literature Review on Control Charts and the Process Capability
Indices CPU and CPL

Control chart is an online process monitoring technique used with a primary objective
of quick detection of the occurrences of assignable causes of variation and to restrict the
production of non-conforming items with respect to the preassigned specification limits.
The original idea of control chart technique belongs to Shewhart (1931). The basic concept
behind Shewhart’s control chart thechnique is to identify two distinct types of variations that
a process inherits viz., (i) chance causes of variation and (ii) assignable causes of variation.
While the first type of variation is due to random fluctuation in the sample observations and
hence is beyond control; the assignable causes of variation can, very well, be controlled.
To monitor process centering over various rational subgroups, Shewhart (1931) proposed
the so called X chart. Also, process variability can be monitored using R-chart or S-chart,
based, respectively, on range or standard deviation. The mathematical expressions for these
charts are available in any standard book on statistical quality control (for example, refer to
Montgomery, 2000). All of these three control charts are based on the common assumption
that the underlying distribution of the concerned quality characteristic is normal.

Due to their immense potential of practical applications, properties of these control
charts have been extensively studied by a number of eminent researchers. Chen (1997)
studied the distribution of the run length of X chart when the parameters (viz., μ and σ ) of
the quality characteristic and consequently control limits are estimated. Tsai et al. (2005)
proposed control limits of X chart when the number of subgroups is small. This can be
used to monitor the process mean at an earlier stage of production as compared to other
existing approaches. Costa (1999) studied the performance of X − R chart to detect small
to moderate shifts in mean and variability of the quality characteristic when the sample
size varies over the subgroups and the values of the parameters are known. Castagliola
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et al. (2012) studied the performance (in terms of the run length) of X chart with variable
sample size when the parameters are unknown and hence are estimated. Schilling and
Nelson (1976) explored the effect of non-normality on the X chart. The authors showed
the “manner of approach to normality” for various possible distributions of the concerned
quality characteristics along with the respective sample sizes.

Process capability analysis is another important quality control tool used for assessing
the capability of a process. Particularly, for processes with unilateral specification limits,
most of the research articles available in literature are devoted to the indices CPU and CPL,
defined in Eq. (1). Kane (1986) proposed the plug-in estimators of CPU and CPL as ĈPU =
USL−X

3s
and ĈPL = X−LSL

3s
, respectively, where, X = 1

n

∑n
i=1 Xi and s2 = 1

n

∑n
i=1(Xi −

X)2.
Chou and Owen (1989) showed that under normality assumption, ĈPU ∼ Cntn−1(δU )

and ĈPL ∼ Cntn−1(δL) where, Cn = (3
√

n)−1, δU = (3
√

n)−1CPU, δL = (3
√

n)−1CPL and
tn−1(δ) is a non-central ‘t’ distribution with (n−1) degrees of freedom and non-centrality
parameter δ. Since both of these estimators are biased, Pearn and Chen (2002) derived the
UMVUE’s of CPU and CPL as C̃PU = bn−1ĈPU and C̃PL = bn−1ĈPL respectively, where,

bn−1 =
√

2
n−1 × �( n−1

2 )

�( n−2
2 )

. They also suggested a step-by-step testing procedure for testing

whether a process meets a pre-assigned minimum quality level, say, “C” as

H0 : CI ≤ C

against H1 : CI > C

and derived expressions for the corresponding p-value, critical value and the power of the
test.

Chou and Owen (1989) established lower confidence bounds (LCB) on CPU and
CPL based on the natural estimators ĈPU and ĈPL. However, since ĈPU and ĈPL

estimators are biased, Pearn and Shu (2003) derived a 100γ % LCB say, “CU ” and
“CL” of CPU and CPL, respectively, such that for quality characteristics of smaller
the better type, γ = P [tn−1(δ1) ≥ t1], where t1 = −k1

√
n, k1 = 3ĈPU , δ1 = −3

√
nCU

while for quality characteristics of larger the better type, γ = P [tn−1(δ2) ≥ t2], where
t2 = k2

√
n, k2 = 3ĈPL, δ2 = 3

√
nCL. Pearn and Liao (2006) studied the properties of the

plug-in estimators of CPU and CPL, when the samples are contaminated by measurement
error. Shu et al. (2006) defined plug-in estimators of CPU and CPL based on multiple
samples and have explored the statistical properties of those estimators. Chatterjee and
Chakraborty (2012) made an extensive review of the research articles dealing with PCIs
for unilateral specification limits, in general.

3. List of Notations

Following is a list of notations and terminologies and their respective meanings or formu-
lations (as the case may be), which will be used in the succeeding sections.

1. m = Number of rational sub-groups;
2. n = Sample size;
3. N = m × n is the total number of sample observations over all the subgroups;
4. c4, d2, and d3 are usual constants of control charts (see Montgomery, 2000) and are

functions of “n” only.

5. d∗
2 = (d2

2 + d2
3

m
)

1
2 ;



4338 Chatterjee and Chakraborty

6. v = 1

−2+2

√
1+2× d2

3
m×d2

2

;

7. c = d2 ×√
v1
2 × �( v1

2 )
�

(
v1+1

2

) , where, v1 is obtained by substituting m = 1 in the expression

for ‘v’;

8. bn =
√

2
n

�( n
2 )

�( n−1
2 ) ;

9. δ
(N)
U = 3

√
NCPU ;

10. δ
(N)
L = 3

√
NCPL; and

11. δ
(N)
I is δ

(N)
U or δ

(N)
L depending upon the availability of USL or LSL, respectively;

4. Statistical Properties of the Estimators of CPU and CP L based on
Information from Control Charts

Suppose the quality characteristic under consideration is normally distributed and also the
concerned process is under statistical control. Also, suppose, while checking the stability
of a process, we have “m” rational subgroups (see Montgomery, 2000) and from each
rational subgroup, a sample of size “n” is drawn. Here we assume constant sample size for
all the rational subgroups. So the total number of observations is N = mn. Also, let Xij

is the measured value of the quality characteristic for the j th sample from the ith rational
subgroup. Then:

1. X = 1
N

∑m
i=1

∑n
j=1 Xij = 1

m

∑m
i=1 Xi is the average of subgroup averages;

2. S = 1
m

∑i=m
i=1 Si is the average of the standard deviations over the subgroups with Si =√

1
n−1

n∑
j=1

(Xij − Xi)2 being the standard deviation corresponding to the ith subgroup

for i = 1(1)m; and
3. R = 1

m

∑i=m
i=1 Ri is the average of the ranges over the subgroups with Ri being the range

corresponding to the ith subgroup for i = 1(1)m.

Spiring (1995) argued that if the small sample properties of a PCI are known, then the

control chart estimates of μ and σ , viz. X and S/c4, respectively (when X - S chart is

used) or X and R/d2, respectively (when X - R chart is used) should be used to study the
distributional properties of the estimated PCI’s.

4.1. Distributions and Unbiased Estimators of CPU and CP L When Information is
Gathered from the Corresponding X − R Control Charts

In the context of statistical quality control (SQC), especially for control charting, generally,
the sample size is considerably small, say, 4–6 (see Montgomery, 2000). Hence, often range
is used as a measure of dispersion and, consequently, X −R charts are the most commonly
used control charts for checking the stability of a process. Woodall and Montgoemry
(2000) have discussed two different estimators of σ , based on the average sample range
[R = 1

m

∑m
i=1 Ri], given by:

1. σ̂1 = R
d2

, which is generally used to design control chart and to analyze capability of a
process; and

2. σ̂2 = R
d∗

2
, which is generally used in gauge repeatability and reproducibility study.
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Hence, R
d2

will be more appropriate estimator of σ in the present context. Woodall and
Montgoemry (2000) made a thorough study of these two estimators of σ .

Following Spiring’s (1995) approach, from Eq. (1), the estimator of CPU can be

redefined, by replacing μ and σ in Eq. (1) by their estimators X and σ̂1 = R/d2,
respectively, as

Ĉ
(R)
PU = d2

3
× U − X

R
. (3)

The statistical distribution of Ĉ
(R)
PU and the corresponding unbiased estimator are derived in

the following theorem.

Theorem 4.1. Ĉ
(R)
PU ∼ d2

3d∗
2

√
N

tv(δ(N)
U ), with, δ

(N)
U = 3

√
NCPU , where, tv(δ(N)

U ) denotes the

non central t-distribution with “v” degrees of freedom and the corresponding non centrality
parameter is δ

(N)
U .

Also, C̃
(R)
PU = d∗

2
d2

× bv × Ĉ
(R)
PU is an unbiased estimator of CPU corresponding to the

plug-in estimator Ĉ
(R)
PU , where, bv =

√
2
v

�( v
2 )

�( v−1
2 ) .

Proof. Suppose, Xij

iid∼ N (μ, σ 2). Then, X ∼ N (μ, σ 2/N) and hence,

Z∗ =
√

N (U − X)

σ
∼ N (δ(N)

U , 1). (4)

Again, R
σ

∼ d∗
2

χv√
v

approximately (Woodall and Montgoemry, 2000), where “v” represents
the fractional degrees of freedom for the χ−distribution. Kuo (2010) formulated the math-
ematical expression for “v”.

Therefore, from Eq. (3):

Ĉ
(R)
PU = d2

3
√

N
× σ

R
× Z∗

and hence, Ĉ
(R)
PU ∼ d2

3d∗
2

√
N

tv(δ(N)
U ) (5)

which implies, E[Ĉ(R)
PU ] = d2

d∗
2 × bv

× CPU

Thus,

C̃
(R)
PU = d∗

2 bv

d2
× Ĉ

(R)
PU (6)

is an unbiased estimator of CPU .
Hence, the proof.
Similarly, it is easy to show that

Ĉ
(R)
PL ∼ d2

3d∗
2

√
N

tv(δ(N)
L )
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Table 1
Relative Efficiency of Range Compared to Standard Deviation for

Different Sample Sizes

Sample Size (n) Relative Efficiency

2 1.000
3 0.992
4 0.975
5 0.955
6 0.930
10 0.850

and C̃
(R)
PL = d∗

2 bv

d2
× Ĉ

(R)
PL is an unbiased estimator of CPL.

Thus, in general,

Ĉ
(R)
I ∼ d2

3d∗
2

√
N

tv(δ(N)
I ), where, δ(N)

I = 3
√

NCI

and, C̃
(R)
I = d∗

2 bv

d2
× Ĉ

(R)
I is an unbiased estimator of CI .

⎫⎪⎪⎬⎪⎪⎭ (7)

�

4.2. Distributions and UMVUEs of the Estimators of CPU and CP L when Information
is Gathered from the Corresponding X − S Control Charts

Due to the simplicity of computation as well as ease of interpretation, range is the most
popular measure of dispersion among the practitioners. However, sometimes, despite these
advantages, standard deviation outperforms range in measuring dispersion and conse-
quently, X − S chart is used instead of X − R chart to check and establish stability of a
process. Montgomery (2000) enlisted the following situations where standard deviation is
preferred over range as a measure of dispersion:

(i) when the sample size is moderately large, say, n > 10; and
(ii) when the sample size is not constant.

Table 1 shows the tabulated values of the relative efficiency of range in comparison
with standard deviation for various sample sizes (see Montgomery, 2000).

From Table 1 it is evident that for n > 10, range does not perform satisfactorily. Hence,
similar to the formulation of the estimator of CI based on information from X − R chart
in Sec. 4.1, it is required to formulate the same based on information gathered from X − S

chart as well. Such estimators are specially useful for processes with at least moderately
large sample size.

The plug-in estimator of CPU is obtained by replacing μ and σ in Eq. (1) by their

estimators X and S/c4, respectively, as obtained from the corresponding X−S chart. Thus,
the plug-in estimator of CPU , based on the estimators of μ and σ as obtained from X− S
control chart, is

Ĉ
(s)
PU = c4

3
× U − X

S
. (8)
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Under normality assumption, S is approximately normally distributed (Kirmani et al.,
1991; Pearn and Kotz 2007). However, very little study has been done to construct the
exact distribution of S, although due to various economical and technical constraints, often,
sample sizes observed in literature are not considerably large and hence inadequate for
large sample approximation. Lemma 4.1 gives the exact distribution of S which will be
particularly useful in the subsequent section on process capability control charts of CI as
there we need to know the exact distribution of the estimators of CI , when the sample size
is not considerably large.

Lemma 4.1.
S

2

σ 2
∼ 1

m(N − m)
× χ2

m(N−m)

Proof.

S
2

σ 2
= 1

m2
×

(
S1 + S2 + · · · + Sm

σ

)2

= 1

m2(n − 1)
×

(
a1 + a2 + · · · + am

σ

)2

, say

where, ai =
√

n∑
j=1

(Xij − Xi)2.

Now,
(

ai

σ

)2 ∼ χ2
n−1, i = 1(1)m and since ai’s are independent and identically dis-

tributed (iid),
(

ai

σ

) ×
(

a′
i

σ

)
∼ χ2

n−1, for i �= i ′ = 1(1)m.

Hence, due to the additive property of chi-square distribution,
(

a1+a2+···+am

σ

)2
follows

chi-square distribution with degrees of freedom m(n− 1) +m(m − 1)(n− 1) = m(N −m)

i.e. S
2

σ 2 ∼ 1
m(N−m) × χ2

m(N−m) and hence the proof.

Now, using Lemma 4.1, the underlying statistical distribution of Ĉ
(s)
PU and the corre-

sponding UMVUE are derived in the following results. �

Theorem 4.2. Ĉ
(S)
PU ∼ c4

3
√

N
tm(N−m)(δ

(N)
U ), with δ

(N)
U = 3

√
NCPU , where, tm(N−m)(δ

(N)
U )

denotes the non-central t-distribution with m(N − m) degrees of freedom and the cor-
responding non centrality parameter is δ

(N)
U .

Also, C̃
(s)
PU = bm(N−m)

c4
× Ĉ

(s)
PU is an unbiased estimator of CPU corresponding to the

plug-in estimator Ĉ
(S)
PU .

Proof. From Eqs. (8) and (4),

Ĉ
(S)
PU = c4

3
√

N
× Z∗√

S
2

σ 2

and hence using Lemma 4.1, Ĉ
(S)
PU ∼ c4

3
√

N
× tm(N−m)(δ

(N)
U ). (9)

Thus, E[Ĉ(S)
PU ] = c4

bm(N−m)
× CPU
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and C̃
(S)
PU = bm(N−m)

c4
× Ĉ

(S)
PU is an unbiased estimator of CPU .

Hence, the proof.
Similarly,

Ĉ
(S)
PL ∼ c4

3
√

N
× tm(N−m)(δ

(N)
L ).

Also, C̃
(S)
PL = bm(N−m)

c4
× Ĉ

(S)
PL is the unbiased estimator of CPL.

Thus, in general,

Ĉ
(S)
I ∼ c4

3
√

N
× tm(N−m)(δ

(N)
I )

and, C̃
(S)
I = d∗

2 bv

d2
× Ĉ

(S)
I is an unbiased estimator of CI .

}
(10)

Our next objective is to check whether these unbiased estimators can be considered as
the minimum variance unbiased estimators (UMVUE) as well. Since we have already
assumed that Xij ∼ N (μ, σ 2), for i = 1(1)m, j = 1(1)n and normal distribution belongs

to the exponential family of distributions; (X, S
2
) are jointly complete sufficient for (μ, σ 2)

and hence, following Rao - Blackwell theorem (see Casella and Berger, 2007), C̃S
PU and

C̃S
PL are UMVUEs of CPU and CPL.

Since R is not a function of
∑m

i=1

∑n
j=1 X2

ij , (X, R
d2

) are not jointly complete sufficient

statistics for (μ, σ 2) and consequently, neither of C̃
(R)
PU or C̃

(R)
PL are UMVUEs of CPU or

CPL, respectively. �

5. Process Capability Control Charts of CPU and CP L

It has been already observed in Sec. 4 that the underlying statistical distribution of both
C̃

(R)
I and C̃

(S)
I is non central t. Hence, to construct their process capability control charts,

we can proceed as follows:

1. using probabilistic approach of control chart (similar to Chen et al., 2007; Spiring, 1995;
and so on); and

2. constructing conventional control chart for non-normal (in particular t-distributed) vari-
ables (see Montgomery, 2000).

Since the process capability control charts designed so far are based on the probabilistic
approach we also follow the same procedure to make our formulation comparable to the
existing process capability control charts.

5.1. Process Capability Control Chart of CPU and CP L based on Information from the
Corresponding X − R Control Chart

From Theorem 4.1, Ĉ
(R)
PU ∼ d2

3d∗
2

√
N

tv(δ(N)
U ). Also, C̃

(R)
PU = d∗

2 bv

d2
× Ĉ

(R)
PU is an unbiased

estimator of CPU (see Eq. (6)). Thus,

P

[
d2

3d∗
2

√
N

tv, α
2
(δ(N)

U ) ≤ Ĉ
(R)
PU ≤ d2

3d∗
2

√
N

× tv,(1− α
2 )(δ(N)

U )

]
= 1 − α

i.e. P

[
bv

3
√

N
tv, α

2
(δ(N)

U ) ≤ C̃
(R)
PU ≤ bv

3
√

N
tv,(1− α

2 )(δ(N)
U )

]
= 1 − α
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and hence the corresponding control limits for the process capability control chart of CPU

will be

UCL
C

(R)
PU

= bv

3
√

N
tv,(1− α

2 )(δ
(N)
U )

CL
C

(R)
PU

= CPU

LCL
C

(R)
PU

= bv

3
√

N
tv, α

2
(δ(N)

U )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (11)

However, control limits in Eq. (11) are functions of the parameters μ and σ of the quality
characteristics and in practice, their values are often unknown. Following Spiring (1995),
we use the information gathered from the corresponding X − R chart and estimate μ and

σ by X and R
d2

, respectively. Consequently, CPU is replaced by C̃
(∗R)

PU and δ
(N)
U by δ̃

(N,R)

U in

Eq. (11), where C̃
(∗R)

PU = 1
m

∑m
i=1 C̃

(∗R)
PUi

with C̃
(∗R)
PUi

being the value of the unbiased estimator
of CPU for the ith rational subgroup with i = 1(1)m, (the expression of which is developed
in Theorem 5.1 below) and the observed non-centrality parameter of the corresponding

t- distribution is δ̃
(N,R)

U = 3
√

NC̃
(∗R)

PU . Thus, the modified control limits of the process
capability control chart of CPU , based on the information from X − R control chart, are
obtained as

UCL
C̃

(R)
PU

= bv

3
√

N
tv,(1− α

2 )(̃δ
(N,R)

U )

CL
C̃

(R)
PU

= C̃
(∗R)

PU

LCL
C̃

(R)
PU

= bv

3
√

N
tv, α

2
(̃δ

(N,R)

U )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (12)

Similarly, the process capability control chart for CPL will be

UCL
C̃

(R)
PL

= bv

3
√

N
tv,(1− α

2 )(̃δ
(N,R)

L )

CL
C̃

(R)
PL

= C̃
(∗R)

PL

LCL
C̃

(R)
PL

= bv

3
√

N
tv, α

2
(̃δ

(N,R)

L )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (13)

where, C̃
(∗R)

PL = 1
m

∑m
i=1 C̃

(∗R)
PLi

with C̃
(R)
PLi

being the value of the unbiased estimator of CPL

for the ith rational subgroup and δ̃
(N,R)

L = 3
√

NC̃
(∗R)

PL .
Hence, in general, the process capability control chart for CI can be designed as

UCL
C̃

(R)
I

= bv

3
√

N
tv,(1− α

2 )(̃δ
(N,R)

I )

CL
C̃

(R)
I

= C̃
(∗R)

I

LCL
C̃

(R)
I

= bv

3
√

N
tv, α

2
(̃δ

(N,R)

I )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (14)

Now, for any control chart, say X− chart, the usual convention is to construct the control

limits in terms of the overall average (X) while the values, which are plotted in that
control chart, are the averages (Xi) corresponding to individual subgroups, for i = 1(1)m.
Therefore, it is required to develop the single sample unbiased estimator of CPUi

when

the corresponding plug-in estimator is given by Ĉ
(∗R)
PUi

= d2(U−Xi )
3Ri

as this will be required
while plotting the unbiased estimators of CPU for individual subgroups in the process
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capability control chart. Here, Xi and Ri denote the average and range corresponding to
the ith subgroup, for i = 1(1)m. The expression for this unbiased estimator is developed
in Theorem 5.1. Here, for notational simplicity, Ĉ

(∗R)
PUi

, Xi and Ri are replaced by Ĉ
(∗R)
PU , X,

and R, respectively.

Theorem 5.1. Ĉ
∗(R)
PU ∼ d2

3c
√

n
tv1 (δ(n)

U ).

Also, the corresponding unbiased estimator of CPU is C̃
(∗R)
PU = c bv1

d2
× U−X

3R
.

Proof. R
σ

∼ c√
v1

χv1 (see Pearson, 1952; Spiring, 1995). Also, if Xi ∼ N (μ, σ 2) for i =

1(1)n, then,
√

n(U−X
σ

) ∼ N (δ(n)
U , 1). Thus,

Ĉ∗R
PU ∼ d2

3c
√

n
× tv1 (δ(n)

U ) (15)

(16)

Thus,

C̃
(∗R)
PU = cbv1

d2
× Ĉ

(∗R)
PU (17)

is an unbiased estimator of CPU .
Hence, the proof.
Similarly,

Ĉ
∗(R)
PL ∼ d2

3c
√

n
tv1 (δ(n)

L )

Also,

C̃
(∗R)
PL = cbv1

d2
× Ĉ

(∗R)
PL (18)

is an unbiased estimator of CPL.
Here also neither of C̃

(∗R)
PU or C̃

(∗R)
PL are UMVUEs of CPU or CPL, respectively. �

5.2. Process Capability Control Chart of CPU and CP L based on Information from the
Corresponding X − S Control Chart

From Theorem 4.2, Ĉ
(S)
PU ∼ c4

3
√

N
tm(N−m)(δ

(N)
U ). Moreover, in Sec. 4.2, we have seen that

C̃
(s)
PU = bm(N−m)

c4
× Ĉ

(s)
PU is an UMVUE of CPU . Thus,

P

[
c4

3
√

N
× tm(N−m), α

2
(δ(N)

U ) ≤ Ĉ
(S)
PU ≤ c4

3
√

N
× tm(N−m),(1− α

2 )(δ
(N)
U )

]
= 1 − α,

i.e., P

[
bm(N−m)

3
√

N
× tm(N−m), α

2
(δ(N)

U ) ≤ C̃
(S)
PU ≤ bm(N−m)

3
√

N
× tm(N−m),(1− α

2 )(δ
(N)
U )

]
= 1 − α.
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Hence, the control limits of the process capability control chart of CPU , based on the
information from X − S chart, are given by

UCLCPU
= bm(N−m)

3
√

N
× tm(N−m),(1− α

2 )(δ
(N)
U )

CLCPU
= CPU

LCLCPU
= bm(N−m)

3
√

N
× tm(N−m), α

2
(δ(N)

U )

⎫⎪⎬⎪⎭ , (19)

Following Spiring (1995), here we use the information gathered from the corresponding

X − S chart and estimate μ and σ by X and S
c4

, respectively. Consequently, CPU is

replaced by C̃
(∗S)

PU and δ
(N)
U by δ̃

(N,S)

U in Eq. (19), where, C̃
(∗S)

PU = 1
m

∑m
i=1 C̃

(∗S)
PUi

with C̃
(∗S)
PUi

being the value of the UMVUE of CPU for the ith rational subgroup with i = 1(1)m and
the observed non centrality parameter of the corresponding noncentral t- distribution is

δ̃
(N,S)

U = 3
√

NC̃
(∗S)

PU .
In this context, Pearn and Chen (2002) formulated the UMVUE of CPU for single

sample information when σ 2 is replaced by S2. Suppose the plug-in estimator of CPU ,
based on single sample information, is defined as Ĉ

(∗S)
PU = U−X

3S
. Then, the authors have

shown that C̃
(∗S)
PU = bn−1Ĉ

(∗S)
PU is the UMVUE of CPU .

Thus, the modified control limits of the process capability control chart of CPU , based
on the information from X − S control chart, are obtained as

UCL
C̃

(S)
PU

= bm(N−m)

3
√

N
× tm(N−m),(1− α

2 )(̃δ
(N,S)

U )

CL
C̃

(S)
PU

= C̃
(∗S)

PU

LCL
C̃

(S)
PU

= bm(N−m)

3
√

N
× tm(N−m), α

2
(̃δ

(N,S)

U )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (20)

Similarly, the process capability control chart for CPL, based on information from the
corresponding X − S control chart, will be

UCL
C̃

(S)
PL

= bm(N−m)

3
√

N
× tm(N−m),(1− α

2 )(̃δ
(N,S)

L )

CL
C̃

(S)
PL

= C̃
(∗S)

PL

LCL
C̃

(S)
PL

= bm(N−m)

3
√

N
× tm(N−m), α

2
(̃δ

(N,S)

L )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (21)

where C̃
(∗S)

PL = 1
m

∑m
i=1 C̃

(∗S)
PLi

with C̃
(∗S)
PLi

being the value of the UMVUE of CPU for the ith

rational subgroup with i = 1(1)m and δ̃
(N,S)

L = 3
√

NC̃
(∗S)

PL .
Hence, in general, process capability control chart of CI can be designed, based on

information from the corresponding X − S chart, as

UCL
C̃

(S)
I

= bm(N−m)

3
√

N
× tm(N−m),(1− α

2 )(̃δ
(N,S)

I )

CL
C̃

(S)
I

= C̃
(∗S)

I

LCL
C̃

(S)
I

= bm(N−m)

3
√

N
× tm(N−m), α

2
(̃δ

(N,S)

I )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)
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Figure 1. OC curve for CI control chart based on information from X-bar and R chart.

5.3. Operating Characteristic (OC) Curve and Average Run Length (ARL) of Process
Capability Control Charts for CPU and CP L

From the point of view of interpretation as well as acceptability among the users, OC- curve
and the average run length (ARL) are some of the very crucial performance yardsticks of a
control chart. Montgomery (2000) defined OC as the ability of a control chart to detect a shift
in the value of the corresponding quality characteristic and gives a graphical representation
of the β risk against the magnitude of shift (k). The OC curve for the process capability
control chart of CI based on information from the corresponding X −R chart (see Eq. (14)
with CI0 = 1.00, n = 5, and m = 6 is given in Fig. 1.

Similarly, with information from X−S chart and n = 11, the corresponding OC curve
for the process capability control chart of CI (see Eq. (22)) is given in Fig. 2.

To study the impacts of k, m, n, and CI0 on ARL, we have considered k = 0.1(0.1)1,
CI0 = 1.0(0.2)2.0 and m = 6 along with two different values of n, viz., n = 5, n = 11.
Therefore, while constructing process capability control chart of CI , information obtained
from X − R control chart will be applicable for the first case; while for the second case,
information from X − S control chart will be useful.

Thus, when n = 11, although the β− values vary for various values of k and CI0 , the
value of ARL remains 2 irrespective of the values of k and CI0 . However, when n = 5,
ARL values differ to a large extent. This is also quite justified as higher sample size makes
a control chart more robust towards sampling fluctuation and hence ARL should ideally be
smaller. These values of ARL are given in Table 2.

The following can be observed from Table 2.

1. When the shift (k) is fixed, β− risk and ARL increases with the increase in CI0 value.
2. For fixed CI0 , ARL decreases with the increase in k. This implies that the newly designed

process capability control charts are more efficient to larger shifts than the smaller ones.
They have inherited this characteristic from the corresponding X chart.
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Figure 2. OC curve for CI control chart based on information from X-bar and S chart.

Although ARL remains constant for CI control chart with information from X − S

chart and various combinations of k and CI0 values; similar observations, as listed above,
also hold good for their β-risks.

In this context, the β− risk and ARL of Chen et al.’s (2007) limits are higher than
those of our proposed CI control charts of both the types. This is due to the fact that, since
the degrees of freedom (see, m(N − m) or “v” as the case may be) corresponding to the
noncentral t distribution attached to the control limits of the proposed CI chart is greater
than that corresponding to Chen et al.’s (2007) (see, (n − 1)), the β− value and ARL for
the proposed control chart will always be smaller than that of Chen et al.’s (2007) chart.

Table 2
ARL Values for m = 6, n = 5, k = 0.1(0.1)1 and CI0 = 1.0(0.1)2.0

CI0

k 1.00 1.20 1.40 1.60 1.80 2.00

0.1 3 4 7 26 − −
0.2 3 3 5 11 − −
0.3 2 3 4 7 26 −
0.4 2 3 3 5 11 −
0.5 2 2 3 4 7 26
0.6 2 2 3 3 5 11
0.7 2 2 2 3 4 7
0.8 2 2 2 3 4 5
0.9 2 2 2 2 3 4
1.0 2 2 2 2 3 3
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Table 3
Data and Ĉ

∗(R)
PU Values of ‘X’ for Various Subgroups

Sample Sub-group Sub-group Sub-group Sub-group Sub-group Sub-group
No. 1 2 3 4 5 6

1 0.17 0.16 0.13 0.19 0.13 0.17
2 0.17 0.16 0.15 0.14 0.18 0.19
3 0.16 0.18 0.17 0.13 0.16 0.15
4 0.19 0.17 0.14 0.16 0.12 0.14
5 0.14 0.13 0.19 0.17 0.13 0.16
C̃ (∗R)

PU 1.7638 1.8428 1.5794 1.5576 1.7112 1.8164

For a control chart, ARL is a “smaller the better” type of characteristic in a sense that it
will require less number of samples before detecting a shift in the process (Montgomery,
2000). Our proposed CI control charts out-perform Chen et al.’s (2007) control charts with
respect to ARL.

6. Numerical Examples

6.1. Example 1

The data for this example is from a chemical manufacturing industry in Mumbai, In-
dia. The quality characteristic under consideration is coded as “X” and it is of smaller
the better type with corresponding USL given by 0.3 unit. In the present example,
n = 5,m = 6, N = 30 and USL = 0.3. Also, for n = 5, c4 = 0.94, d2 = 2.326, d3 =
0.864 . Here, v = 21.9899 ≈ 22, v1 = 3.8586 ≈ 4, c = 2.4745 and hence bv = 0.9654
and bv1 = 0.7979. Since n < 10, we shall design the CPU control chart based on informa-
tion from the corresponding X − R control chart. The data along with the observed values
of C̃

(R)
PU for individual subgroups are given in Table 3 below.

From Table 3, X = 0.1577, R = 0.055, C̃
(∗R)

PU = 1.7119, and δ̃
(N,R) = 28.1294.

Hence, when α = 0.05, Eq. (12) gives

UCL
C̃

(R)
PU

= 2.3537
CL

C̃
(R)
PU

= 1.7119
LCL

C̃
(R)
PU

= 1.2655

⎫⎪⎬⎪⎭ (23)

The corresponding CPU control chart together with the corresponding C̃
∗(R)
PU values are

given in Fig. 3.
From Fig. 3, it can be observed that all the C̃

∗(R)
PU values lie within UCL

C
(R)
PU

and
LCL

C
(R)
PU

and indicate consistently high capability of the process. This consistency in the
capability level of the process allows us to summarize the overall capability of the process
through C̃

(R)
PU .

Here, d∗
2 = 2.3490 and Ĉ

(R)
PU = 2.006. Hence, C̃

(R)
PU = d∗

2 ×bv

d2
× Ĉ

(R)
PU = 1.9556 which

indicates that the overall capability of the process is really very high. Here, C̃
(R)
PU is not the

mere average of individual UMVUEs as is evident from Table 3, since all the C̃
(∗R)
PU values

for individual subgroups are less than this value.



Capability Control Charts for CPU and CPL 4349

Figure 3. CPU control chart based on information from X-bar and R chart for data in Table 3.

In this context, for the present data set, the control limits, based on Chen et al.’s (2007)
approach, are as follows:

UCL(Chen)
CPU

= 4.1188
CL(Chen)

CPU
= 1.7809

LCL(Chen)
CPU

= 0.8270

⎫⎪⎬⎪⎭ . (24)

Note that although for this particular example, the inference about the performance of the
process, over various subgroups, remains the same for both the approaches, the control
limits using Chen et al.’s (2007) approach are much more wider compared to our proposed
limits. Hence use of their control limits increase the chance of overlooking some serious
drawbacks in the process. In fact, the higher ARL values corresponding to Chen et al.
(2007) limits, as compared to our newly proposed control limits, as discussed in Sec. 5,
also justify this phenomenon. This can be visualized more clearly in the next example.

6.2. Example 6.2

Here we use a data collected from a integrated circuit (IC) manufacturing process. This data
was originally used by Chen et al. (2007). In IC manufacturing and packaging process, one
of the major quality characteristics is wire bonding of gold wire as it plays a critical role
in the normal operation of IC. This is a quality characteristic of higher the better type. The
data set consists of 1.2 mm diameter type gold wire with measurements of wire strength
(in grams) in the pull test.

Here m = 25, n = 11, i.e., N = 275 and LSL = 5. Moreover, since n > 10, while
constructing process capability control chart of CPL, the relevant information is to be
gathered from the corresponding X − S chart. Since here m(N − m) = 6250 is sufficiently

large, bm(N−m) ≈ 1. Also, here X = 8.0062 and S = 0.8077.
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Figure 4. CPL control chart based on X-bar and S chart for Chen et al.’s (2007) data.

Now, for the present data, C̃
(∗S)

PL = 1.2102 and δ̃
(N,S) = 760.2067. Hence, when α =

0.05, from Eq. (13), the control limits of the CPL control chart will be:

UCL
C̃

(S)
PL

= 1.2554
CL

C̃
(S)
PL

= 1.2102
LCL

C̃
(S)
PL

= 1.1659

⎫⎪⎬⎪⎭ (25)

The control limits of Eq. (25) for CPL control chart are shown in Fig. 4 below along with
the observed C̃

∗(S)
PL values for various samples. The limits obtained by Chen et al. (2007),

using Eq. (2), are also incorporated in this figure.
In Fig. 4, the control limits corresponding to Eq. (25) are drawn in continuous lines;

while the dotted lines stand for Chen et al.’s (2007) limits. From this figure it can be seen that
13 out of the 25 points lie below LCL

C̃
(S)
PL

, where as 7 points lie above UCL
C̃

(S)
PL

. Although
exceeding UCL

C̃
(S)
PL

in general signifies producing items with better quality under the given
set-up - in the present context, incidence of having 20 out of 25 observations beyond
either of the two control limits strongly suggest that the process is not having consistent
capability. Thus, despite being stable as measured by the corresponding X − S chart, the
process fails to perform consistently. In fact, the process sufferers from considerably high
fluctuation in variability as measured over the samples from various subgroups. Although
the corresponding S-chart fails to raise alarm for such fluctuations, it becomes evident
as soon as the CPL control chart is drawn. Also, it is not advisable to assess the overall
capability of the process by using a single PCI under such circumstances as that may not
represent the actual capability scenario of the process.

In this context, Chen et al.’s (2007) limits, in Fig. 4, ignore this inconsistency in the
CPL values at subgroup levels. Even, for the last two subgroups, where, the C̃

(∗S)
PL values

are considerably high, Chen et al.’s (2007) control chart still consider these points to be
below the corresponding upper control limit.



Capability Control Charts for CPU and CPL 4351

7. Concluding Remarks

In this article, we have studied the underlying statistical distributions of the plug-in (natural)
estimators of CPU and CPL, when the parameters (see μ and σ ) of the concerned quality
characteristic are estimated based on information drawn from the corresponding X − S or
X−R charts. We also defined the unbiased estimators and UMVUEs (wherever applicable)
for these estimators. Then, these estimators have been used to design process capability
control charts of CPU and CPL. As a result, the conclusion drawn about the process regarding
its overall capability is based on samples collected over a considerable period of time and
hence is more robust in some sense towards the degree of fluctuation in the performance of a
process from subgroup to subgroup. We also observed that although the original underlying
distribution (noncentral t- distribution) remains the same, the degrees of freedom and the
noncentrality parameter get changed as soon as we incorporate subgroup information in
the CPU or CPL control chart. We also noted that even statistically stable processes may
have inconsistent capability (as in Example 2), i.e., statistical stability does not ensure
consistency in the quality of the items produced. Absence of consistency in a process may
lead to confusion if we try to evaluate the overall capability of the process through a single
capability index. Thus, along with the X − S or X − R charts, one should also construct
the corresponding process capability control chart before assessing the overall capability
of the process.

We saw, through two numerical examples, that our newly designed process capability
control charts for CPU and CPL perform better than the existing charts. However, as can
be seen from Example 2, when at least one of m and n become considerably high (here
m = 25), the degrees of freedom of the corresponding non-central t- distribution get highly
increased leading to a set of very stringent control limits. For practical purposes, a correction
factor is needed to be incorporated in these control limits in such situations. Formulation
of such correction factors may be an interesting future research problem.

Finally, Kuo and Mittal (1993) cited the following advantages of using control charts
from a pragmatic perspective.

1. Skillful application of control charts reduces scrap and rework - which, in turn, reduces
production cost and increases productivity.

2. Control charts restrict unnecessary process adjustment by distinguishing between ran-
dom and assignable causes of variation.

3. Even if all the concerned statistic values are within the stipulated control limits, control
charts still provide diagnostic information regarding the stability of a process through
the pattern of points plotted in the control chart.

While process capability control charts, in general, inherit all of these advantages of control
chart technique; they have some added advantages as listed below.

1. Process capability control charts require lesser sample size as compared to the usual
‘one shot’ estimation of PCIs (refer to Spiring, 1995).

2. Use of process capability control charts makes the sampling scheme more econom-
ical in a sense that the sample information already gathered while constructing the
corresponding control charts for checking the stability of the process, can be reused
here.

3. Process capability control charts enable continuous assessment of a process and hence
the common dilemma of production engineers regarding the ideal time for assessing
process capability gets resolved.
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Since, process capability control charts monitor the consistency of a process in terms of
its capability over individual subgroups, they can be used to keep constant vigil on process
performance specially for the purpose of tool replacement and supplier selection among
others.
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