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A Superstructure of Process Capability Indices
for Circular Specification Region

MOUTUSHI CHATTERJEE AND ASHIS KUMAR
CHAKRABORTY

SQC & OR Unit, Indian Statistical Institute, Kolkata, India

Circular specification regions can be seen in processes like hitting a target (in ballistics),
drilling a hole (in manufacturing industries) and so on. However, only a few process
capability indices are available in the literature to address the problem. Most of these
indices, in turn, make some assumptions like equality of variance and independence
of the two axes of the circular tolerance region. Since, in most of the cases, these
assumptions are not practically viable, in the present article, we have proposed a few of
the process capability indices which do not need the above assumptions to be valid. Also,
we propose a superstructure which unifies all the proposed indices. Some properties
of these indices have been studied including the threshold value and the relationship
of the proportion of non-conformance with the member indices of the superstructure.
These strengthen the practical utility of the superstructure. Distributional properties
like expectations and variances of the member indices of the superstructure are also
studied to have a better insight about the indices. A real life example has been discussed
to carry out a comparative study of the performance of the existing as well as the newly
developed indices.

Keywords Circular specification region; Elliptical process region; Bi-variate process
capability indices; Superstructure; Threshold value; Proportion of non-conformance;
Plug-in estimator.

Mathematics Subject Classification 62E15; 62F0; 62P30.

1. Introduction

Process capability indices (PCI’s) are used to assess how close a process is to produce
what it is supposed to produce. Due to their vast application, these indices are getting more
and more importance in practical field, specially in manufacturing industries day by day.
Kane (1986) explained the importance of PCI’s specially in manufacturing industries. In
the literature of process capability indices, computation of most of the indices require two
preassigned and distinct specification limits, viz., Upper Specification Limit (USL) and
Lower Specification Limit (LSL); see Chan et al. (1988), Boyles (1991), Kotz and Johnson
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Process Capability Indices for Circular Specification 1159

(2002), Vannman (1995), and the references there in for more about univariate PCI’s with
bilateral specification limits. Under the assumption of normality of the distribution of the
quality characteristic under consideration, the four classical PCI’s for bilateral specification
limits are

Cp = USL − LSL

6σ

Cpk = d − |μ − M|
3σ

Cpm = d

3
√

σ 2 + (μ − T )2

Cpmk = d − |μ − M|
3
√

σ 2 + (μ − T )2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (1)

where USL and LSL are, respectively, the upper and lower specification limits of a process,
d = USL−LSL

2 , M = USL+LSL
2 and “T” is the target of the process.

Among these four indices, Cp measures the potential process capability. However,
since it only incorporates process standard deviation in its definition, Cpk is defined to take
into account the process average also. Further, Cpm was defined to establish the relationship
between squared error loss as far as the target is concerned and the process capability indices.
Finally, Cpmk was constructed from Cpk and Cpm to increase the sensitivity ( of a PCI ) to
departure of the process mean “μ” from the target value “T”. Vannman (1995) proposed
generalized univariate PCI’s by developing a superstructure of univariate capability indices
called Cp(u, v) which is given by

Cp(u, v) = d − u|μ − M|
3
√

σ 2 + v(μ − T )2
, u, v ≥ 0. (2)

Some indices are also available in literature to address the problem of unilateral specification
limits, i.e., where either of “USL” and “LSL” of the concerned quality characteristic is
available (see Kane, 1986; Chan, et al., 1988; Grau, 2009 and the references therein).
Chatterjee and Chakraborty (2012) provided a review of the work done in this area.

Although these two types of specifications are mostly used in manufacturing industries,
there are still some parts which remain mostly unattended in literature. Computing capability
of a circular specification region is one of such cases. Circularity is the condition of a surface
where all points of the surface intersected by any plane perpendicular to a common axis
are equidistant from that axis. Following the concept of “Geometric dimensioning and
tolerancing” (GD&T), circular specifications can be observed in processes engaging in
drilling a hole or from ballistic point of view, hitting a target within a circular region (see
Laurent, 1957; Davis et al., 1992). The uniqueness of the processes with circular tolerance
region is that the so-called “USL” and/ or “LSL” does not exist corresponding to the
concerned quality characteristic and hence classical PCI’s are not applicable here. In fact,
the following steps are applied to construct the circular (positional) specification region.

1. Identify the target location of the hole or the point to be hit.
2. Treat the location as (0,0) point of co-ordinate geometry and draw the X and Y axes

from that point.
3. Draw a circle with center at this (0,0) point and radius as the preassigned tolerable

distance from this point. This will give a circular specification region.
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1160 Chatterjee and Chakraborty

Krishnamoorthi (1990) first addressed the problem and proposed two PCI’s for circular
specifications given by

PCp =
π
4 D2

9πσ 2
= 1

36
× D2

σ 2
(3)

PCpk = D2

4
[√

(X − a)2 + (Y − b)2 + 3σ
]2 , (4)

where D is the diameter of the circular tolerance region; σ is the (equal) standard deviation
of the X1 and X2 co-ordinates and (a, b) is the target center. When the standard deviation
of the X1 and X2 co-ordinates, say σ1 and σ2, are not equal, σ = max(σ1, σ2). Here, PCp

provides the potential capability of a process and PCpk gives its actual capability. Note that,
Krishnamoorthi’s (1990) PCI’s (though unit-less) consider the ratio of two areas which are
expressed in squared units. Hence, to make them comparable to conventional PCI’s square
root of these indices should be considered. Also, the index PCpk , though named analogous
to Cpk of bilateral specifications, works actually like Cpm in a sense that the numerator is
the same as that of PCp while the denominator is modified to measure the proximity of the
process mean to the target.

Davis et al. (1992) formulated the PCI of a process with circular specification as a
function of the minimum fraction non-conforming produced by the process. For this they
considered the Euclidian distance between the target position and the actual position of the
center of the feature as the measurable quality characteristic and thus ignored the underlying
correlation between the two axes of the specification region.

Bothe (2006) applied control chart technique to measure the stability of the quality
characteristic corresponding to each of the two axes as well as the radial distances of the
observed center locations from the target and proposed the following PCI’s for circular
tolerance region:

ĈP = USL − μ̂C

3σ̂ST ,C

P̂P = USL − μ̂C

3σ̂LT ,C

ĈPK = USL − μ̂r

3σ̂ST

P̂PK = USL − μ̂r

3σ̂LT

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

where μ̂C =
∑n

i=1 rC,i

n
; rC,i =

√
(xi − x)2 + (yi − y)2; “n” is the sample size; MR =∑n

i=2 MRi

n−1 , MRi’s are obtained from moving range chart; σ̂ST = MR
1.128 ; σ̂LT = 1

c4

√∑n
i=1(ri−r)2

n−1 ,

with, ri =
√

x2
i + y2

i ; μ̂r =
∑n

i=1 ri

n
; σ̂ST ,C = MRC

d2
, where MRC values are obtained from

the moving range chart of the data set after the target hole location is shifted to the mid-
dle of the cluster of actual hole centers and d2 is a function of the sample size “n” and

σ̂LT ,C = 1
c4

√∑n
i=1(rC,i−rC )2

n−1 and c4 is a constant based on the sample size “n”.
The commonality between all of these indices is that they are based on the following

two assumptions (see Davis et al., 1992):
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Process Capability Indices for Circular Specification 1161

1. The variation of the quality characteristic along the two axes are the same.
2. The random variables corresponding to two axes are mutually independent.

However, due to several practical reasons the assumptions of homoscedasticity and
independence of the two axes may be violated (Chew and Boyce, 1962). This gives an
elliptical shape to the process region. Moreover, for normally distributed characteristics,
even under the said assumptions, the underlying distribution of the radial distance between
the actual process center and the target center will no longer remain normal—rather, it will
follow radial error distribution. Hence while measuring capability of processes which are
characterized by the radial distance as the measurable characteristic, using Cpk , Cpm, or
other PCI’s specially designed for normally distributed process characteristics (the approach
considered by Bothe, 2006), may often yield inconsistent as well as misleading results.

In this context, following Karl et al. (1994), the problem of circular specification may
also be designed as a multivariate (specifically, bi-variate) process capability problem with
X1 and X2 being the two correlated variables along the two axes of the specification region.
Note that in the analysis of radial error for two dimensional case, the X1 component is the
azimuth or deflection error, and the X2 component is the range or pitch error. Azimuth and
range errors are associated with ground or horizontal targets, and deflection and pitch errors
are associated with vertical targets (Culpepper, 1978). In the present paper, we have adopted
this approach to propose a superstructure of PCI’s called Cp,c(u, v) dealing with circular
specification region and having more general field of application in a sense that Cp,c(u, v)
does not take into account the assumptions of independence and homoscedasticity of the
two axes.

We discuss various indices belonging to Cp,c(u, v) in the next section. Section 3 deals
with some crucial properties of Cp,c(u, v) including its relationship with proportion of
non-conformance and threshold value. The discussion regarding the plug-in estimator of
Cp,c(u, v) and its expectation and variance is in Sec. 4 followed by a comparison between
the performance of Cp,C(u, v) and existing PCI’s in this field based on some real life as
well as simulated data sets in Sec. 5. Section 6 deals with an application of Cp,c(u, v) in a
real life data set. Finally, we conclude the article in Sec. 7 with a brief summary.

2. New Super-structure of Process Capability Indices for Processes
with Positional (Circular) Tolerances

Here we assume the underlying distribution of the quality characteristics to be bivariate
normal, i.e., if X1 and X2 are the two directional process variables, then

X = (X1, X2) ∼ N2

(
μ1, μ2, σ

2
1 , σ 2

2 , ρ = σ12

σ1σ2

)
.

As we have already mentioned, for practical purposes the “target center” of the hole is
considered to be the (0,0) point of the co-ordinate axes. Moreover, the tolerance region
should measure the allowable deviation from the “target center” instead of the process
average (mean vector). As such, if the diameter of the circular tolerance region is ‘D’ units
and if the center of the elliptical process region coincides with that of the circular tolerance
region, i.e., (0,0) point, then the potential capability of a process to manufacture products
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1162 Chatterjee and Chakraborty

within the pre-assigned tolerance may be expressed as

Cp,c =
√

Area of a circular specification region with diameter ’D’ units

Area of a 100(1 − α)% constant contour elliptical process region
(6)

The numerator of Eq. (6) can be computed as
√

π (D
2 )2 units, i.e.,

√
π
4 D2 units while the

value of the denominator will be
√

χ2
α,2πσ1σ2

√
1 − ρ2 units, where, χ2

α,2 represents the

value of a χ2 distribution with “2” d.f. that has a right tail area of “α” units. Hence, Cp,c

can be re-written as

Cp,c =
√√√√ π

4 D2

χ2
α,2πσ1σ2

√
1 − ρ2

= D

2
√

χ2
α,2σ1σ2

√
1 − ρ2

= D

2
√

χ2
α,2

√|�|
. (7)

For example, since for α = 0.01, χ2
0.01,2 = 9.210, hence for the 99% constant contour

ellipsoid, Eq. (7) can be written as

Cp,c = D

6.07
√

σ1σ2

√
1 − ρ2

. (8)

Note that Cp,C incorporates the correlation structure between the two variables and also
does not require them to have equal variances. However this index, similar to Cp of bi-lateral
specification limits, does not take into account the process centering and hence determines
potential process capability instead of indicating actual capability of the process. Hence, to
measure the actual capability of a process, we have to define indices similar to Cpk, Cpm,
and so on. For this reason, let us assume that the centers of the circular specification region
and the process region are (0, 0)′ and (μ1, μ2)′, respectively. According to Bothe (2006), “a
hole center is considered to be within specification, when its radial distance from the target
location is less than the radius of the true position circle.” The author used average radial
distance of the observations from the target center as the measure of location.

Following Bothe’s (2006) approach, the actual center of the process region can be
considered as the µ = (μ1, μ2)′, where μ1 and μ2 are, respectively, the arithmetic mean of
the X1-axis and X2-axis values of the measured quality characteristics. Hence, the radial

distance between the target center and the actual process center will be
√

µ′µ =
√

μ2
1 + μ2

2

units. Analogous to Cpk of bilateral specification limits, we can therefore define a PCI for
circular specification as

C∗
pk,c = Cp,c −

√
µ′µ√

πχ2
α,2σ1σ2

√
1 − ρ2
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Process Capability Indices for Circular Specification 1163

Figure 1. Process with all the observations within the process region.

=
D
2 −

√
µ′µ
π√

χ2
α,2σ1σ2

√
1 − ρ2

. (9)

However, C∗
pk,c may not always be able to capture the actual capability of a process. This

can be explained through the following two situations. Here for both the cases we consider
the circular specification region to have center at (0, 0) point with the diameter equal to
7 units. Also, we draw 50 random samples from two different processes both of them
following bi-variate normal distribution with mean vector as µ = (0.6, 0.6)′ and dispersion

matrix

(
1.2 0.93

0.93 1.0

)
i.e., the correlation coefficient is 0.85.

Now, from Fig. 1, we can observe that, for the first process, all the sample observations
are within the specification region. On the contrary, as can be seen in Fig. 2, 2 of the 50
observations lie out side of the modified process region. Hence the first process is more
capable than the second one. However, C∗

pk,c will consider both the processes as equally
capable.

Here the problem lies in the fact that the radial distance of the process center from the
specification center has been used as the measure of deviation from ideal location, which
smooths out the impact of the radial distance of individual observations from the process
center. This can be addressed by replacing µ′µ in Eq. (9) by μ∗ = 1

n

∑n
i=1 d∗

i , where,

d∗
i = √

(X1i
− μ1)2 + (X2i

− μ2)2 = √
(X i − µ)′(X i − µ), where, X i = (X1i , X2i)′ for

i = 1, 2, · · · , n and “n” is the number of sample observations. Thus, we can redefine
C∗

pk,c as

Cpk,c =
D
2 − μ∗√

π√
χ2

α,2σ1σ2

√
1 − ρ2

(10)
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1164 Chatterjee and Chakraborty

Figure 2. Process with some of the observations outside the process region.

Here, we have used Euclidian distance instead of Mahalanobis distance as otherwise it will
become unit free and hence its subtraction from D

2 in (10) will no longer be possible. Note
that for µ = 0, µ∗ gives the average distance of the observed data points from the target
center and hence for a stable process, it should be less than the radius ( D

2 units). This also
ensures the non-negative value of Cpk,c for a stable process and this characteristics of Cpk,c

is similar to the non-negativity assumption of Cpk of symmetric bilateral specifications.
Boyles (1991) thoroughly discussed the advantages of Cpm over Cpk for bilateral spec-

ification limits, especially while computing the proximity of process centering to the target.
As has been discussed earlier although Krishnamoorthi (1990) proposed PCpk analogous
to Cpm for circular specification, his index does not take into account the possible differ-
ences in the variances along the two axes as well as the correlation between them. Taking
these two draw backs of PCpk into account, we can construct PCI for circular specification
region, analogous to Cpm, in two different ways viz: (i) following Krishnamoorthi’s (1990)
approach and (ii) direct method.

Now, for the first case, the numerator of the index will be same as that of Cp,c in (7) and
in the denominator, we have to incorporate the contribution of the proximity of the process
mean to the target center measured by µ′µ (Euclidian distance) or µ′�−1µ (Mahalanobis
distance). Thus, we have

C∗
pm,c = D

√
π

2

[√
πχ2

α,2σ1σ2

√
1 − ρ2 + √

µ′µ
] (11)

Again, Cpm in (1) can be written as Cpm = Cp × 1√
1+( μ−T

σ
)2

, where “T” is the target value

of the characteristic. Thus, for circular tolerance region, we can define using direct method,

Cpm,c = Cp,c × 1√
1 + µ′�−1µ
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Process Capability Indices for Circular Specification 1165

= D

2
√

χ2
α,2σ1σ2

√
1 − ρ2

× 1√
1 + µ′�−1µ

(12)

Next, analogous to Cpmk of bilateral specification limits, we can define Cpmk,c by combining
(10) and (12) as

Cpmk,c =
D
2 − µ∗√

π√
χ2

α,2σ1σ2

√
1 − ρ2

× 1√
1 + µ′�−1µ

(13)

Finally, similar to Cp(u, v) of (2) proposed by Vannman (1995), a superstructure of PCI’s
for circular specification region may be defined as

Cp,c(u, v) =
D
2 − u√

π
μ∗√

χ2
α,2σ1σ2

√
1 − ρ2

× 1

1 + vµ′�−1µ
, (14)

where “u” and “v” are two nonnegative parameters. Here, Cp,c(0, 0) = Cp,c, Cp,c(1, 0) =
Cpk,c, Cp,c(0, 1) = Cpm,c and Cp,c(1, 1) = Cpmk,c. Following are some salient features of
Cp,c(u, v):

1.

Cp,c(u, v) ≤ Cp,c(u, 0) ≤ Cp,c(0, 0)

Cp,c(u, v) ≤ Cp,c(0, v) ≤ Cp,c(0, 0),∀u ≥ 0, v ≥ 0

There is no clear-cut relationship between Cpk,c and Cpmk,c. This interrelationship
between the member PCI’s of Cp,c(u, v) are similar to the findings of Kotz and Johnson
(2002) for Cp,Cpk, Cpm, and Cpmk for the univariate case. Also,

Cpm,c > C∗
pm,c, if

√
πσ1σ2

√
1 − ρ2 >

√
µ′µ

µ′�−1µ

= C∗
pm,c, if

√
πσ1σ2

√
1 − ρ2 =

√
µ′µ

µ′�−1µ

< C∗
pm,c, if

√
πσ1σ2

√
1 − ρ2 <

√
µ′µ

µ′�−1µ

2. For any fixed correlation coefficient, all the indices increase if either or both of σ1 and
σ2 decrease. A desirable property for any good process is that its variance should be as
minimum as possible.

3. For fixed σ1 and σ2, the indices increase with the increase in the correlation (ρ) between
the X1 and X2 axes.

4. Cpm,c is more user-friendly than C∗
pm,c in a sense that it provides some measure of the

degree of correction required for proper process centering. In fact the value of 1√
1+µ′�−1µ

should ideally be one which is attained if µ = T = 0, i.e., if process centering coincides
with the target center. The lower the value of this constant, the higher will be the degree of
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1166 Chatterjee and Chakraborty

departure of average process centering from target. As such consideration of 1√
1+µ′�−1µ

along with Cpm,c depicts the true picture of a process.
5. Cp,c(u, v) is optimum on target.

3. Some More Interesting Properties of C p,c(u, v)

In this section, two very crucial properties of Cp,c(u, v) are discussed viz., threshold value
and the relationship with the proportion of non-conformance. Both of these properties are
discussed with respect to Cp,c, measuring potential capability of a process with circular
process region.

3.1 Threshold Value of C p,c

The concept of threshold value is very important specially from the view point of the
interpretation of the computed index value. The threshold value signifies such a level of a
process beyond which it is considered to be capable of producing which it is supposed to
produce, while an index value below the threshold gives clear indication of the unsatisfactory
performance of the process. In this context, since Cp,c measures the potential capability of
a process, conventionally, threshold value is computed only for this PCI. The logic behind
this is that if a process is not even potentially capable, there is no point in carrying out
further computation regarding its actual capability. In practice, often the threshold value
of Cp,c is considered as the threshold value of the corresponding PCI’s measuring actual
capability of a process.

Note that for the case of bilateral specifications (eg., CP ), generally, the threshold value
is “1” which is attained at that level of the process where the process region coincides with
the specification region. Although in our case this basic approach will remain same, we
have to take into account another aspect of the process, i.e., the correlation coefficient (ρ)
between the two variables of interest.

Like Cp, for which the threshold value is reached at USL − LSL = 6σ , for Cp,c

with nonzero correlation coefficient among the two variables, the maximum variance for
either variable will be D

2 units for just capable scenario as otherwise some part of the
process region will lie outside the modified process region. Let σmax = max(σ1, σ2) = D

2
and σmin = min(σ1, σ2). Then, from (7), the threshold value, CT

p,c of Cp,c will be

CT
p,c =

D
2√

χ2
α,2 × D

2 × σmin

√
1 − ρ2

=
√

D

2 × χ2
α,2 × σmin ×

√
1 − ρ2

. (15)

Note that for ρ = 0 and σ1 = σ2 = D
2 , i.e., when the two variables of the elliptical process

region are uncorrelated and have equal variances, then the process region coincides with the
specification region and hence following the conventional approach of computing threshold
value of PCI’s here also the threshold value should be “1”. However as can be seen from
(15), this is not the case here. The reason behind this is that we considered the process region
to be a 100(1 − α)% constant contour ellipsoid and this will contribute to the expression
of the threshold value of Cp,c even when the other factors like correlation and unequal
variance are nullified or neutralized. As such for ρ = 0 and σ1 = σ2 = D

2 , the threshold
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Process Capability Indices for Circular Specification 1167

value of Cp,c will be CT ∗
p,c =

√
1

χ2
α,2

= 1
χα,2

and hence Cp,c and in general Cp,c(u, v) is not

very suitable when there is zero or very low correlation between the two variables.
Finally, the threshold value of Cp,c can be considered as the threshold value of Cpm,c as

well since for µ = 0, Cpm,c boils down to Cp,c. Even when Cp,c ≥ CT
p,c but Cpm,c < CT

p,c,
the process is likely to be off-target. On the other hand, if Cpm,c > CT

p,c, the process can be
considered to be capable. Since Cpmk,c ≤ Cpm,c ≤ Cp,c, such observation is true for Cpmk,c

as well.
Since Cpk,c does not boil down to Cp,c for µ = 0, similar conclusion can not be drawn

for this PCI. However this is not a serious drawback as the Cpk,c values should not be directly
used to judge the capability level of a process as that may give misleading result. Rather, it
is useful for computing the expected proportion of non-conforming items produced by the
process—the expression for which is developed in Sec. 3.2.

3.2 Relationship of Proportion of NonConformance with C p,c and C pk,c

A process with higher value of PCI is supposed to produce lower proportion of non-
conforming items. Hence a good PCI should be a one-to-one function of such proportion.
Following the same logic as that for the threshold value, usually, statistical relationship is
established between the potential capability of a process and the proportion of nonconfor-
mance.

Now, let us first consider the position of an actual observation with respect to the
circular specification region as has been depicted in Fig. 3.

From this figure, with the center at the (0, 0) point, the general expression for the
proportion of nonconformance “PNC” can be formulated as follows:

PNC = P

[
(X − 0)′�−1(X − 0) >

(
D

2
0

)
I2

(
D
2
0

)]
, (16)

Figure 3. Position of an observed point with respect to the circular specification region.
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1168 Chatterjee and Chakraborty

where “I2” is a (2 × 2) identity matrix. Assuming that the process is centered on target,
PNC can be written as

PNC = P

[
X ′�−1 X >

(
D

2
0

)
I2

(
D
2
0

)
|X ∼ N2(0, �)

]
= P

[
χ2

α,2 >
D2

4

]

= P

[
D2

4χ2
α,2σ1σ2

√
1 − ρ2

<
1√|�|

]

= P

[
C2

p,c <
1√|�|

]

= P

[√
|A|C2

p,c <

√
χ2

α,n−1 × χ2
α,n−2

]
, since

|A|
|�| ∼

p∏
i=1

χ2
n−i

= P

[√
χ2

α,n−1 × χ2
α,n−2 > (n − 1)

√
|S|C2

p,c

]

= P

⎡⎢⎣
√√√√{χ2

α,2n−4

2

}2

> (n − 1)
√

|S|C2
p,c

⎤⎥⎦ , from Pearn et al. (2007)

= P
[
χ2

α,2n−4 > 2(n − 1)
√

|S|C2
p,c

]
(17)

where A = (n − 1)S with “S” being the sample variance-covariance matrix and “n” is the
sample size.

As such, if either of PNC or Cp,c is known, the other can be readily obtained. However,
since, when the process is not on target, Cp,c measures the potential capability of a process
instead of the actual capability, PNC gives the minimum observable proportion of noncon-
formance for µ 	= 0. It is required to derive the expression for the expected proportion of
nonconformance for such processes and let us denote this proportion as P E

NC . Then,

P E
NC = P

[
X ′�−1 X >

D2

4
|X ∼ N2(µ, �)

]
= P

[
D2

4
< χ2

α,2(λ)

]

= P

⎡⎣Cpk,c <

⎧⎨⎩
√

χ2
α,2(λ)

χ2
α,2

− µ∗
√

π ×
√

χ2
α,2

⎫⎬⎭× 1

|�| 1
4

⎤⎦

= P

⎡⎢⎣2(n − 1)
√

|S|C2
pk,c <

⎧⎨⎩√Fα,2,2(λ) − µ∗
√

π
× 1√

χ2
α,2

⎫⎬⎭
2

×
√(

χ2
α,2n−4

)2

⎤⎥⎦
= P

[
2(n − 1)

√
|S|C2

pk,c <

√
Fα,2,2(λ) × χ2

α,2n−4 − µ∗
√

π
×√

Fα,2n−4,2

]
(18)
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Process Capability Indices for Circular Specification 1169

Since Cpk,c measures the actual capability of a process, P E
NC , being a function of Cpk,c,

measures the expected proportion of non-conformance. However, exact relationship be-
tween process non-conformance and Cpm,c or Cpmk,c does not exist as has been the case for
Cpm and Cpmk observed by Vannman (1995). It may be noted that PNC can be expressed
as a lower bound for some probabilities expressed as functions of Cpm,c and Cpmk,c.

PNC ≤ P
[
2(n − 1)

√
|S|C2

pm,c < I ∗
F × χ2

α,2n−4

]
(19)

PNC ≤ P
[
2(n − 1)

√
|S|C2

pmk,c < I ∗
F × χ2

α,2n−4

]
, (20)

where,

I ∗
F =

{
1 if X ∼ N2(0, �)
Fα,2,2(δ) if X ∼ N2(µ, �)

.

4. Plug-in Estimator of C p,c(u, v) and its Expectation and Variance

Since in most of the practical situations, the values of the process parameters remain
unknown, one has to depend upon the PCI values computed on the basis of the sample
information. For Cpc(u, v), the corresponding plug-in estimator will be

Ĉp,c(u, v) =
D
2 − u√

π
μ̂∗√

χ2
α,2s1s2

√
1 − r2

× 1

1 + vX
′
S−1 X

=
D
2 − u√

π
μ̂∗√

χ2
α,2

√|S|
× 1

1 + vX
′
S−1 X

, (21)

where μ̂∗ = 1
n

∑n
i=1 d̂∗

i , d̂∗
i =

√
(X1i

− X1)2 + (X2i
− X2)2, i = 1, 2, · · · , n, X =

(X1, X2)′ with Xi being the sample mean corresponding to Xi axis, for i = 1, 2; s1 and
s2 are the sample standard deviations corresponding to the variables “X1” and “X2”
respectively; “r” is the sample correlation coefficient between the two variables and “S”

is the corresponding sample variance-covariance matrix such that S = (
s2

1 s12

s12 s2
2

) with

s12 = rs1s2.
However, due to sampling fluctuations, mere computation of such PCI value using

(21) may not, always, reveal the actual capability of the concerned process and hence the
characteristics of this plug-in estimator, especially its expectation and variance, needs to be
studied. For this, we first compute E[Ĉp,c(0, 0)]. From (21), the expression for Ĉp,c(0, 0)
will be

Ĉp,c(0, 0) = D

2
√

χ2
α,2s1s2

√
1 − r2

= D

2
√

χ2
α,2

× |S|− 1
4 , since, |S| 1

2 = s1s2

√
1 − r2. (22)
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1170 Chatterjee and Chakraborty

Now, if |S| is the determinant of the sample variance-covariance matrix (popularly known as
sample generalized variance), then for p = 2, |S| ∼ |�|

(n−1)2

∏2
i=1 χ2

n−i (Giri, 2004). Hence,

E[Ĉp,c(0, 0)] = D

2
√

χ2
α,2

× E
[
|S|− 1

4

]

=
{√

n − 1
( 2n−5
2 )


(n − 2)

}
× Cp,c(0, 0)

= k(n) × Cp,c(0, 0), say, where, k(n) =
√

n − 1
( 2n−5
2 )


(n − 2)

⇒ E

[
1

k(n)
Ĉp,c(0, 0)

]
= Cp,c(0, 0) (23)

Therefore, Ĉ∗
p,c(0, 0) = 1

k(n) Ĉp,c(0, 0) is an unbiased estimator of Cp,c(0, 0).
Also,

E
[
Ĉ2

p,c(0, 0)
] = D2

4χ2
α,2

× E[|S|− 1
2 ]

= [
C2

p,c(0, 0)
]× n − 1

n − 3
(24)

and hence

V [Ĉp,c(0, 0)] = (n − 1) ×
⎧⎨⎩ 1

n − 3
−
[


( 2n−5
2 )


(n − 2)

]2
⎫⎬⎭× C2

p,c(0, 0). (25)

Now, from (21), the expression for Ĉp,c(u, 0) will be

Ĉp,c(u, 0) =
D
2 − u√

π
μ̂∗√

χ2
α,2

√|S|

= Ĉ∗
p,c(0, 0) − u × μ̂∗ × |S|− 1

4√
πχ2

α,2

⇒ E[Ĉp,c(u, 0)] = E[Ĉp,c(0, 0)] − u√
πχ2

α,2

× E[μ̂∗ × |S|− 1
4 ]

= k(n) × Cp,c(0, 0) − u√
πχ2

α,2

× E[μ̂∗ × |S|− 1
4 ], (26)

Note that since μ̂∗ and |S|− 1
4 are functions of “µ̂” and “S” respectively, they are also

mutually independent. Hence, E[μ̂∗ × |S|− 1
4 ] = E[μ̂∗] × E[|S|− 1

4 ]. Now,

E[|S|− 1
4 ] =

√
(n − 1)

|�| 1
4

×
[


( 2n−5
2 )


(n − 2)

]
. (27)
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Process Capability Indices for Circular Specification 1171

Moreover, if (Y1, Y2)′ ∼ N2(0, 0, σ 2
1 , σ 2

2 , ρ = σ12
σ1σ2

), then for the radial error
√

Y 2
1 + Y 2

2 ,

expected value will be E[
√

Y 2
1 + Y 2

2 ] =
√

2
π
�(K)σ ∗2

1 and E[Y 2
1 + Y 2

2 ] = (2 − K2)σ ∗2
1

(Scheur, 1962), where:

• σ ∗2
1 = 1

2

{
(σ 2

1 + σ 2
2 ) + [

(σ 2
1 − σ 2

2 )2 + 4σ 2
12

] 1
2
}
;

• σ ∗2
2 = 1

2

{
(σ 2

1 + σ 2
2 ) − [

(σ 2
1 − σ 2

2 )2 + 4σ 2
12

] 1
2
}
;

• K2 = σ 2
1 −σ 2

2

σ 2
1

;

• �(K) is the complete elliptical integral of the 2nd kind (Legendre, 1932).

Hence, E[μ̂∗] =
√

2
π
�(K)σ ∗2

1 and as such, from (26),

E[Ĉp,c(u, 0)] =
√

n − 1

χ2
α,2

√|�| ×
[

D

2
− u

√
2

π
× �(K)σ ∗

1

]
× 
( 2n−5

2 )


(n − 2)
. (28)

Also,

E
[
Ĉ2

p,c(u, 0)
] = 1

χ2
α,2

× E

⎧⎨⎩
[

D

2
− u

√
2

π
μ̂∗
]2
⎫⎬⎭× E

(|S|− 1
2
)

= 1

χ2
α,2

×
{

D2

4
+ u

π
σ ∗

1 ×
[
u(2 − k2)σ ∗

1 − D
√

2�(k)
]} n − 1

(n − 3)
√|�| .

(29)

Hence, from (28)and (29),

V [Ĉp,c(u, 0)] = n − 1

χ2
α,2

√|�| ×
[

1

n − 3
×
[
D2

4
+ u

π
σ ∗

1 ×
{
u(2 − k2)σ ∗

1 − D
√

2�(k)
}]

−
{

D

2
− u

√
2

π
× �(K)σ ∗

1

}2

×
(


( 2n−5
2 )


(n − 2)

)2
⎤⎦ . (30)

Again, from (21), for Ĉp,c(0, v), we have

E[Ĉp,c(0, v)] = E

[
Ĉp,c(0, 0) ×

(
1 + vX

′
S−1 X

)− 1
2

]
= E

[
Ĉp,c(0, 0)

]× E

[(
1 + vX

′
S−1 X

)− 1
2

]
= k(n)Cp,c(0, 0) ×

{
1 − v

2
E(X

′
S−1 X) + 3v2

8
E

[(
X

′
S−1 X

)2
]

− · · ·

+ (− 1
2 )(− 1

2 − 1)(− 1
2 − 2) · · · (− 1

2 − r − 1)

r!
vrE

[(
X

′
S−1 X

)r]
+ · · ·

}
.

(31)
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1172 Chatterjee and Chakraborty

Now, since in our case p = 2,

X
′
S−1 X ∼

(
n − 1

n

)
× χ2

2 (λ)

χ2
n−2

, (Giri, 2004),

i.e. X
′
S−1 X ∼

(
2(n − 1)

n(n − 2)

)
×

χ2
2 (λ)
2

χ2
n−2

n−2

i.e. X
′
S−1 X ∼

(
2(n − 1)

n(n − 2)

)
× F2,n−2(λ),

where χ2
2 (λ) denotes the non central chi-square distribution with 2 degrees of freedom

and non-centrality parameter λ = nµ′�−1µ, χ2
n−2 is the central chi-square distribution

with (n − 2) degrees of freedom and F2,n−2(λ) denotes the noncentral F-distribution with
“2” and (n-2) degrees of freedom and non-centrality parameter “λ”. Note that the rth raw
moment of the non-central F-distribution exists only for (n − p) > 2r . In our case, p = 2.
Also, in practice, to avoid some undesirable situations (e.g., over-fitting), the sample size
(n) is considered to be large compared to the number of variables (i.e., number of quality
characteristics), i.e., n > p while, often very high values of “r” are not used in practice.
Hence, it is logical to assume (n − 2) > 2r and this guarantees the existence of the raw
moments of the non-central F-distribution.

Now, let Cn,2 = 2(n−1)
n(n−2) . Moreover, since observed value of X

′
S−1 X is likely to be

small, we take into account the raw moments of X
′
S−1 X in (31) up to second order. Then,

from (31),

E[Ĉp,c(0, v)] = k(n) × Cp,c(0, 0) ×
{

1 − v

4
× Cn,2 × (n − 2)(2 + λ)

n − 4

+ 3v2

32
× C2

n,2 ×
[

(n − 1)2
{
λ2 + 8(λ + 1)

}
(n − 4) × (n − 6)

]}
(32)

and

E
[
Ĉ2

p,c(0, v)
] = {k(n)}2 × C2

p,c(0, 0) ×
{

1 − v

2
× Cn,2 × (n − 2)(2 + λ)

n − 4

+ v2

4
× C2

n,2 ×
[

(n − 1)2
{
λ2 + 8(λ + 1)

}
(n − 4) × (n − 6)

]}
. (33)

Hence, from (32) and (33), the variance of Ĉp,c(0, v) will be

V [Ĉp,c(0, v)] = {k(n)}2 × C2
p,c(0, 0) ×

{
1 − v

2
× Cn,2 × (n − 2)(2 + λ)

n − 4

+ v2

4
× C2

n,2 ×
[

(n − 1)2
{
λ2 + 8(λ + 1)

}
(n − 4) × (n − 6)

]

−
[

1 − v

4
× Cn,2 × (n − 2)(2 + λ)

n − 4
+ 3v2

32
× C2

n,2
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Process Capability Indices for Circular Specification 1173

× (n − 1)2
{
λ2 + 8(λ + 1)

}
(n − 4) × (n − 6)

]2
⎫⎬⎭ . (34)

Since Cp,c(u, v) is a hybrid of Cp,c(u, 0) and Cp,c(0, v), for p = 2 and retaining up to second
order raw moments of X

′
S−1 X , we have from (21)

E[Ĉp,c(u, v)] = 1√
χ2

α,2

×
[
E(|S|− 1

4 )
]

×
[

D

2
− u√

π
× E(µ̂∗)

]
×
{
E
[
(1 + vX

′
S−1 X)−

1
2

]}

= 1√
χ2

α,2

×
√

n − 1

|�| 1
4

× 
( 2n−5
2 )


(n − 2)
×
[

D

2
− u

√
2

π
× �(K)σ ∗

1

]

×
{

1 − v

4
× Cn,2 × (n − 2)(2 + λ)

n − 4
+ 3v2

32
× C2

n,2

×
[

(n − 1)2
{
λ2 + 8(λ + 1)

}
(n − 4) × (n − 6)

]}
(35)

E
[
Ĉ2

p,c(u, v)
] = 1

χ2
α,2

× n − 1

(n − 3)
√|�| ×

{
D2

4
+ u

π
σ ∗

1 ×
[
u(2 − k2)σ ∗

1 − D
√

2�(k)
]}

×
{

1 − v

2
× Cn,2 × (n − 2)(2 + λ)

n − 4
+ v2

4
× C2

n,2

×
[

(n − 1)2
[
λ2 + 8(λ + 1)

]
(n − 4) × (n − 6)

]}
(36)

and hence, V [Ĉ2
p,c(u, v)] can be obtained from (35) and (36).

5. Comparative Study of the Performance of C p,c(u, v) and Other Existing
Capability Indices for Circular Specification

To compare the performances of Cp,c(u, v) for u = 0, 1 and v = 0, 1 with those of the existing
ones, we use five data sets viz. data set used by Bothe (2006) and four simulated bi-variate
normal data sets. Bothe’s (2006) data (let us refer it as D∗) deals with an automobile
supplier who bores a large hole near the middle of an aluminium flywheel housing. The
“X1” and “X2” coordinates of the hole centers for 15 housings bores are measured and
recorded (Bothe, 2006). Here the diameter of the circular specification region is 10 units,
i.e., D = 10 and the target center is assumed to be at the (0, 0) point. From this data set,

we have, µ̂ =
(

2.5
3.2

)
and �̂ =

(
0.50 0.1428

0.1428 0.4571

)
with ρ̂ = 0.2988. We then simulate

another four data sets (all with sample size n = 15) based on the summary statistics of D∗

as follows.

1. Variance along the axis X2 is increased 2.5 times (i.e., 250 %) and its new value is
σ̂2 = 1.1427. All the other summary statistics remain unchanged. This will increase the
difference between the variances along the two axis. We call this data set D - I.
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1174 Chatterjee and Chakraborty

Figure 4. Specification region and process region corresponding to data set D*.

2. The correlation coefficient is increased to ρ̂ = 0.85 from ρ̂ = 0.2988. For this high value
of ρ̂, the two axes will no longer be mutually perpendicular . All the other summary
statistics remain unchanged. We call this data set D - II.

3. Variance along the axis X2 is increased 2.5 times (i.e., 250%) and its new value is
σ̂2 = 1.1427 and also the correlation coefficient is increased to be ρ̂ = 0.85. All the
other summary statistics remain unchanged. This will make the process region more
elliptical than circular. We call this data set D - III.

4. Finally, we keep �̂ unchanged and consider the new µ̂ to be (0.02, 0.02)′. This will
bring the process center closer to the target center viz. (0, 0)′. We call this data set D -
IV.

The five sets of circular specification regions along with their corresponding process
regions are given in Figs. 4–8.

The computed values of the various PCI’s, threshold values of Ĉp,c and the minimum
observable as well as expected proportion of non-conformance are summarized in Table 1.
Note that we have excluded two of the indices proposed by Bothe (2006) (see (5)) viz. ĈP

and ĈPk as those are specially designed to measure short term capability of a process and
hence are not comparable to the rest of the PCI’s.

To make the comparison proper we take the square root of P̂Cp and P̂Cpk values and
denote them as P̂C

∗
p and P̂C

∗
pk , respectively. From Table 1 and Figs. 4–8, one can observe

the following.

1. The member indices of Ĉp,c(u, v) namely, Ĉp,c, Ĉpk,c, Ĉpm,c, and Ĉpmk,c and P̂p

and P̂pk always decrease with the increase in the variances along either of the axes.
Although, in the present set of examples, this is true for P̂Cp and P̂Cpk as well, this
may not always be true for these two indices, e.g., when the smaller variance gets
increased but still remains less than the other one ensuring that the maximum of the
variances remain unchanged.

2. Ĉp,c(u, v) values increase with the increase in “̂ρ”.
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Process Capability Indices for Circular Specification 1175

Figure 5. Specification region and process region corresponding to data set D - I.

Although Bothe (2006) assumed both the axes of the specification region to be inde-
pendent, from (5) it can be seen that P̂p and P̂pk are based on μ̂c and μ̂r , respectively,
and hence on the entire data set. As such, P̂p and P̂pk are also affected by the non-zero
correlation of the axes and that is why their values differ in cases of data sets D∗ and
D - II.
Since P̂Cp and P̂Cpk are not influenced by “̂ρ” or the actual observations as such,
their values remain unchanged for the data sets D∗, D - II, and D - IV.

Figure 6. Specification region and process region corresponding to data set D - II.
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1176 Chatterjee and Chakraborty

Figure 7. Specification region and process region corresponding to data set D - III.

3. The difference between the two data sets viz, D∗ and D - IV is that, despite having the
same dispersion structure, D∗ is highly off-centered while the center of D - IV is in
the close vicinity of the target center. Both Ĉp,c and P̂Cp remain unchanged for D∗

and D - IV despite the fact that the process centering is changed in D - IV. Hence, Ĉp,c

and P̂Cp indeed measure the potential capability of a process.

Figure 8. Specification region and process region corresponding to data set D - IV.
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Process Capability Indices for Circular Specification 1177

Table 1
Comparative study of the performances of various PCI’s under circular specification

region

D∗ D - I D - II D - III D - IV

Ĉp,c 2.4391 1.9398 3.2834 2.6109 2.4391
ĈT

p,c 0.9173 0.8975 1.2346 1.2346 2.1736
Ĉpk,c 2.1943 1.7102 3.0015 2.2735 2.1736
Ĉpm,c 0.4582 0.4085 0.6666 0.4793 2.4376
Ĉpmk,c 0.4122 0.4073 0.6094 0.4173 2.1722
P̂NC 8 × 10−7 3.2 × 10−6 1.2 × 10−12 1.3 × 10−5 8.5 × 10−7

P̂ E
NC 0.119 0.0939 0.00478 0.10749 0.01044

P̂p 4.03 1.9050 2.5153 1.7507 2.4848
P̂pk 0.38 0.4014 0.3243 0.4155 2.5191
P̂Cp 5.5556 2.4309 5.5556 2.4309 5.5556
P̂C

∗
p 2.357 1.5591 2.357 1.5591 2.357

P̂Cpk 0.6541 0.4733 0.6541 0.4733 5.4103
P̂C

∗
pk 0.8088 0.6880 0.8088 0.6880 2.3260

However, although Bothe (2006) designed P̂p to measure potential capability of a
process, since its definition includes μ̂c, P̂p fails to measure the potential capability
and this is evident from the tabulated values of P̂p in Table 1 also, as its values for D∗

and D - II are not the same.
4. Both Ĉp,c and P̂Cp conclude that all the processes described in Table 1 are potentially

capable though P̂Cp somewhat exaggerates the situation.
5. ĈT

p,c value remain unchanged for D∗ and D - IV (as desired), since for those two data
sets σ̂min = σ̂1 and ρ̂ is fixed at 0.85.

6. Ĉpk,c possesses a very interesting characteristic in a sense that similar to Ĉpk of
symmetric bilateral specification, it does not measure the proximity of the process
center towards the target center (Boyles, 1991). Rather, it measures the expected
proportion of non-conformance (P̂ E

NC) under the prevailing process setup. As can be
seen in Table 1, the Ĉpk,c values are always very high compared to the corresponding
Ĉpm,c values which may apparently look like conflicting outputs. However, the P̂ E

NC

values, expressed as a function of Ĉpk,c, wipes out this conflict generating similar
decision regarding the performance of the process as Ĉpm,c does and here lies the
efficacy of Ĉpk,c.

7. Ĉpm,c measures the proximity of the process center towards the target center efficiently
and rightly concludes that all the processes except that described under D - IV are
incapable as they suffer from considerably high off-centering.

8. Ĉpmk,c, which gives equal weightage to both the process nonconformance and the
proximity between the process and the specification center, also considers only D - IV
to be capable as other processes, apart from being off-centered, produce considerably
high P̂NC .

9. P̂NC and P̂ E
NC are highly sensitive to change in process centering and process dispersion

and this is also evident from the diagrammatic representations of the specification and
process regions of the five data sets as given in Figs. 4–8.
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1178 Chatterjee and Chakraborty

Figure 9. Plot for data on striker.

10. One interesting aspect of the data set D - III is revealed in Fig. 7. Although all the
observations corresponding to this data set are within the circular specification region,
the expected proportion of non-conformance is found to be 0.10749 (see Table 1), i.e.,
with the present process centering and the dispersion scenario, the process is likely to
produce 10.749% items beyond either of the specification limits. This paradox is solved
by Fig. 7 which shows that a considerable portion of the elliptical process region is
outside the circular specification region. Hence, plotting merely the observations with
respect to the specification region is not sufficient—one should draw the process region
as well to have a better insight about the process.

6. A Practical Example

We are now in a position to apply our proposed superstructure of process capability indices
for circular specification viz., Cp,c(u, v) to real life data. The data used in the present
context pertains to a product called striker used in making ammunitions. These parts should
be properly assembled to ensure satisfactory performance of the produced ammunitions.
Under such circumstances, holes drilled in strikers is our subject of interest.

The data on the coordinates (X1, X2) of the centers of each of the 20 randomly selected
drilled holes are collected. The data is given in Table 2.

Based on past experience and various technical reasons, the diameter of the circular
specification region has been set at 10 centimeter (cm.) i.e. here, D = 10. The summary
statistics corresponding to the data in Table 2 are as follows:

X1 = 2.766, X2 = 2.776, σ̂ 2
1 = 0.408, σ̂ 2

2 = 0.321, ρ̂ = 0.856.

Note that here X1 and X2 are highly correlated and hence Cp,c(u, v) will be appropriate
to apply. Figure 9 shows the plotted data, the corresponding elliptical process region and
the circular specification region.
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The computed values of the member indices of the superstructure Cp,c(u, v) as well as
the existing PCI’s for circular specification are as follows:

Ĉp,c = 3.8097, Ĉpk,c = 3.5184, Ĉpm,c = 0.7605, Ĉpmk,c = 0.7024, P̂p = 2.7992,

P̂pk = 0.4210, P̂Cp = 6.8152, P̂C
∗
p = 2.6106, P̂Cpk = 0.7363, P̂C

∗
pk = 0.8581.

Note that, here Ĉp,c value is considerably high as both the σ̂ 2
1 and σ̂ 2

2 are quite small.
Also, ĈT

p,c = 1.3613 which indicates that the process is “potentially capable”. However, as
can be seen from Fig. 9, the data points lie far away from the target center (0, 0) and this
has been reflected by the low value of Ĉpm,c. But Ĉpk,c fails to capture this characteristic
of the data. Finally, Ĉpmk,c being the combination of Ĉpk,c and Ĉpm,c, also has low value
but not lower than Ĉpm,c. Here, the minimum observable proportion of non-conformance
is 2 × 10−8 but since the process is highly off-centered, at present, the expected proportion
of non-conformance is 0.0598, i.e., about 6% of the drilled holes are not likely to meet the
specification. Therefore, although the process is potentially capable, at present it is highly
off-centered and hence its actual capability is not satisfactory.

In this context, although both P̂pk and P̂Cpk rightly conclude the process to be in-
capable, since their basic assumptions (viz., homoscedasticity and mutual independence
of the two axes) are not satisfied by the present data set, these indices are not suitable
here. Moreover, despite being generalization of Ĉpk in (1), neither of these two indices
are directly related to the proportion of nonconformance. On the contrary, computation
of Ĉp,c(u, v) does not require the said assumptions, measures potential capability of a
process and is directly related to the proportion of non-conformance. It also takes care of
both the process centering as well as process variability, as has already been discussed in
Sec. 5. Therefore, Cp,c(u, v) is more suitable for processes with circular specification re-
gions having heteroscedastic variances and nonzero correlation coefficient along the two
axes.

7. Conclusions

Process capability indices for circular specification region are required to assess capability
of processes like drilling a hole or ballistic processes where the efficiency of hitting a
target is of prime interest. So far, only a few indices have been proposed in this field since
the inception of the subject. Moreover, most these indices make some assumptions (viz.
homoscedasticity and mutual independence of both the axes) which are often not practically
viable. In this article we have defined a superstructure of PCI’s denoted by Cp,c(u, v) which
do not require such assumptions and hence is more robust to deal with. We have also
studied some of the very crucial inferential properties like the expectations and variances
of member indices. The threshold value of Cp,c and its relation to other member indices of
Cp,c(u, v) have been established. We have also formulated the expressions for minimum
observable as well as expected proportion of non-conformance as functions of Cp,c and
Cpk,c, respectively. This strengthens the utility of the superstructure in practice. Moreover,
the theory of Cp,c(u, v) is developed based on the distributional assumption of bi-variate
normality. From computational viewpoint, checking of this distributional assumption is
quite easy and can be done using packages like mvnormtest and mvShapiroTest of the
open source software “R”. Generalized Shapiro-Wilk test (see Liang et al., 2009) can also
be used for the same purpose. In this context, since Cp,c(u, v) has been designed specially
for bi-variate normal data, it is not applicable to the processes with non-normal statistical
distributions in general. However, since we have followed a very general approach, the
concept may be applied for other distributions as well with necessary modifications. Finally,
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this super-structure is easy to calculate and easier to interpret and hence should be more
acceptable to practioners.
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