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1 Introduction

In the context of statistical quality control, process capability analysis is one of the
widely accepted approaches for assessing the ability of a process to produce what it
is supposed to produce. Normally, an index known as the process capability index,
abbreviated as PCI henceforth, is used to judge the health of the process vis-a-vis
the given specification. In this context, the concept of PCI is generally applied in
manufacturing industries. PCI mostly gives single valued assessment of the ability
of a process to produce items within the pre-assigned specification limits. It is,
generally, a higher the better type of index with the ‘high’ value indicating that the
process is capable of producing item that in all likelihood will meet or exceed
customers’ requirement.

According to Kotz and Johnson (2002), before computing the PCI of a process,
one has to ensure that the following two assumptions are satisfied:

1. The quality characteristic under consideration follows normal distribution;
2. The process is under statistical control.

In this context, the assumption of normality is made only due to the fact that such
assumption gives some computational advantages. On the other hand, the second
assumption is comparatively stronger because, absence of stability in the process
makes it unpredictable and hence in that situation, PCI values may not be able to
reflect the actual capability level of the process correctly.
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Kane (1986), in his seminal paper, first documented some of the process
capability indices, which were already being used in industries for quite some times
and discussed about the importance of using those PCIs for assessing capability of
the process. Due to the unquestionable significance of the concept of PClIs, specially
in the context of manufacturing industries, Kane’s (1986) paper motivated a huge
number of statisticians as well as industrial engineers, working in the field of
statistical quality control, to carry out further research work in this field. Kotz and
Johnson (2002) have reviewed about 170 of such high quality research papers
published within just 15 years of Kane’s (1986) paper.

The quality characteristics, which are generally encountered in practice, belong
to either of the following three categories viz.,

1. The nominal the best, i.e., processes with both upper specification limit
(USL) and lower specification limit (LSL), e.g. height, length;

2. The smaller the better, i.e., processes with only USL, e.g. surface roughness,
flatness;

3. The larger the better, i.e., processes with only LSL, e.g. tensile strength, com-
pressive strength.

Moreover, for the quality characteristics of nominal the better type, the corre-
sponding bi-lateral specification limits may be symmetric or asymmetric (with
respect to the target) in nature. The consequences of asymmetric bi-lateral speci-
fication limits are discussed in detail in Sect. 3.

The four classical PCIs, for symmetric bi-lateral specification limits, which are
commonly used, are,

—_U-L
e
Cpx = 7|§t¢; dl
Com =V (1)
Cpmk — d—|u—M|

3v/a? + (u=T)*

Here, ‘U’ and ‘L’ denote the USL and LSL respectively; d = (U —L)/2, M =
(U+L)/2 and ‘T denotes the targeted value of the quality characteristic under
consideration. Also, suppose, ‘X’ is a random variate corresponding to the mea-
surable quality characteristic under consideration. Then, u and ¢ are such that,
X ~N(u,a?).

Vannman (1995) unified these PCIs and proposed the following super-structure
of PCIs for symmetric bi-lateral specification limits:

d — ulu— M|

31/ +v(u—T)*

Cp(u,v) = u,v>0. (2)
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Note that the PCIs defined in Eq. (1) involve parameters like ¢ and o which are
often unobservable and consequently, the actual values of these PCls are also
difficult to obtain. To address this problem, the common practice is to compute the
values of the plug-in or natural estimators of these PCIs. Such estimators are
obtained by replacing the parameters like i and o by their corresponding estimators
viz., X and ‘s’ respectively, based on the random sample(s) drawn from the process.
However, such plug-in estimators are subject to sampling fluctuation and hence can
not be considered as the substitute of the original PCIs unless their distributional
and inferential properties are studied extensively. The properties of the PCIs in
Eq. (1) have been studied extensively in literature (refer Kotz and Johnson 2002,
Pearn et al. 1992 and the references there in).

Although most of the quality characteristics of nominal the better type have
symmetric bi-lateral specification limits, there are some practical situations, where
due to some design aspect or to control production cost without compromising with
the quality level of the product, asymmetry with respect to the target is solicited in
the bi-lateral specification limits. For example, in the context of manufacturing iron
rods of specific length, it is easier to cut a longer rod into a smaller one; than to
make a shorter rod longer. Accordingly, the specifications should be set such that
the distance between USL and T is more than the distance between LSL and
T. Similarly, quality characteristics like hole diameter, should have asymmetric
specification limits, as it is easier to make a hole with smaller diameter to a larger
one through drilling, whereas, turning a larger hole into a smaller one, without
compromising with its circularity, requires lot more effort.

A number of remarkable attempts have been made to define PCIs for processes
with asymmetric bi-lateral specification limits (see Kane 1986; Boyles 1994;
Franklin and Wasserman 1992; Kushlar and Hurley 1992; Vannman 1997 and the
references there-in). Chen and Pearn (2001) defined a super-structure of PCIs called

C;(u, v) for asymmetric specification limits, which is similar to C,(u,v) of sym-
metric specification limits. Latter, Chatterjee and Chakraborty (2014) have estab-

lished exact relationship between the proportion of non-conforming items produced
by the process and some member indices of C;(u, v), viz., C; and C;k. Chatterjee
and Chakraborty (2014) have also studied some other interesting properties of

"

C,(u,v) including the inter-relationships between the member indices of C;(u7 v),

threshold value of C;(u, v) and optimality of C]:(u, v) on target. These are discussed
in more detail in Sect. 3 along with a numerical example.

Apart from the bilateral specification limits, there are also some processes
involving larger the better or smaller the better types of quality characteristics
which require unilateral or one sided specification limits. In such situations, as the
name ‘unilateral’ suggests, either of USL or LSL exist. For example, quality
characteristics like surface roughness and flatness are of smaller the better type in a
sense that their values should be as minimum as possible. Hence, only an USL is set
for such quality characteristics. On the other hand, tensile strength and compressive
strength are the examples of larger the better type of quality characteristics, where,



50 A.K. Chakraborty and M. Chatterjee

the corresponding quality characteristic values should be as high as possible but
should have at least a minimum value, decided by the LSL, for proper functioning
of the concerned item.

Among the PCIs defined specifically for unilateral specification limits (see Kane
1986, Vannman 1998, Grau 2009 and the references there-in), the member indices
of the super-structures of PCIs called CpU (u,v) and le(u,v), which are defined
similar to C,(u, v), are closer to the practical situations. Chatterjee and Chakraborty
(2012) have made an extensive review of the PCIs for unilateral specification
region.

Despite the fact that Grau’s (2009) super-structure performs better than the other
available PCIs for unilateral specification limits, there was some problem in its
practical implementation. In fact Grau’s (2009) super-structure involves a term ‘k’
whose purpose is to penalize the deviation of the quality characteristic value from
the target towards the opposite side of the existing specification limit. However, no
mathematical formulation of ‘k’ was provided and this left room for favourable
manipulation. Chatterjee and Chakraborty (2012) have proposed a formulation of
‘k’ based on the concept of loss of profit due to the deviation of the quality
characteristic value from the target towards the opposite side of the available
specification limit. A brief discussion on the PCIs for unilateral specification limits
and the formulation of ‘k’ along with a numerical example are given in Sect. 4.

Although the bi-lateral and unilateral specification limits cover most of the
quality characteristics encountered in practice, as has already been discussed earlier
in this section, there is another type of quality characteristics which do correspond
to neither of these types specification limits. The center of a drilled hole (in case of
manufacturing processes) or the case of hitting a target (in ballistics) are some
examples of such quality characteristics and the corresponding specification region
is circular in nature.

Krishnamoorthi (1990) and Bothe (2006) have defined PCIs for circular
specification regions. However, both of them have assumed equal variances
(homoscedasticity) and independence of the two axes of the specification region—
which may not be practically viable due to several technical reasons. To address
these problems, Chatterjee and Chakraborty (2015) have defined a super-structure
of PCIs for circular specification region, called C, .(u,v), which does not require
these assumptions. Besides, the authors have studied some important properties of
C,,‘,C(u, v), like, inter-relationship among the member indices, the threshold value,
relationship with proportion of non-conforming items produced by the process and
so on. Moreover, Chatterjee and Chakraborty (2015) have derived the expressions
for the expectations and variances of the plug-in estimators of C, .(u,v) based on
the concept of circular normal distribution (see Scheur 1962). Section 5 contains a
more detail discussion on the PCIs for circular specification limits.

The PClIs discussed so far, deal with one characteristic of a process at a time.
However, with the increasing complexity in the technology, this may not be a valid
assumption. In fact, often processes with multiple correlated characteristics are
encountered in practice. For example (refer Taam et al. 1993), in an automated paint
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application process, there are more than one important quality characteristics viz.,
paint thickness, paint thinner levels, paint lot differences, temperature and so on
which are interrelated among themselves. Use of univariate PCIs may not be able to
assess the actual capability of the process efficiently, in such situations. One needs
to use appropriate multivariate process capability indices (MPCI) in such cases.

Although the literature of statistical quality control is enriched with some
mathematically sound MPCIs (see Taam et al. 1993, Chen 1994, Shinde and
Khadse 2009, Shahriari et al. 2009 and the references there-in), most of these are
difficult to interpret. Moreover, shop-floor people are more conversant with the
univariate PCIs C,, Cpk, Cpm and Cpy and hence MPCls which function similar to
these PCIs should be easily acceptable to them.

Chakraborty and Das (2007) defined an MPCI called Cg(u, v) which functions
similar to C,(u,v) but takes into account ‘p’ correlated quality characteristics
simultaneously under consideration. Moreover, for p = 1, Cs(u,v) boils down to
C,(u,v) which is highly desirable. Later Chatterjee and Chakraborty (2013) have
studied some of the properties of Cg(u,v) like interrelationship between member
indices and relationship with proportion of non-conforming items produced by the
process and observed that these properties are similar to those of C,(u,v) from
multivariate perspective.

Chatterjee and Chakraborty (2011) have also proposed a multivariate analogue
of C;(u, v), called Cys(u,v), for assessing capability of processes having multiple
correlated quality characteristics and asymmetric specification region with respect
to the target vector. They have also studied the inter-relationship between the
member indices of Cy(u,v). The details of these MPCIs are given in Sect. 6.

Most of the PCIs, available in literature, are based on the common assumption
that, the underlying statistical distribution of the concerned quality characteristic is
normal. However, this assumption may not always be valid in practice. For
example, McCormack et al. (2000) have observed that, in the context of high purity
manufacturing, often, the particle count distribution and the distributions of process
yield data are found to be non-normal. Some very interesting research work have
been carried out in literature, to deal with the impact of such non-normality in the
capability assessment of a process. A more detail discussion, in this regard, is made
in Sect. 7.

Although, normality is an important, though not indispensable, assumption for
process capability assessment, it is often difficult to check the same. However, the
situation has somewhat improved in recent times and a number of statistical soft-
wares are now available for testing univariate and multivariate normality. A brief
discussion, in this regard, is made in Sect. 8.

Finally, the chapter concludes in Sect. 9 with a brief summarization of the PCIs
for different types for specification limits, as have been discussed here.
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2 List of Notations

Before going into an elaborate discussion about the univariate and multivariate
process capability indices for different types of specification limits, let us first
consider the following notations which are used in process capability studies time
and again.

U: Upper specification limit (USL);
L: Lower specification limit (LSL);

n: Sample size;
M =L
d =Yk

T: Target;

‘X’ is a random variable corresponding to the measurable quality characteristic
under consideration, such that, X ~ N(u, ¢2).

8. DU =U-— T;

9. D, =T-L
10. d* = min(Dy,Dy);

11 S(x,y) =1 x @' {—“’“‘);q’@)};
12. F* = max (d—*(”_T) ,d—*(T_“)>;

N ks W=

Dy Dy
13. F:max(‘l(‘;—;m,’ﬂlr)—:"));
4. k= max{DL,DU}
15. Ry = %;
16. R, =T34
17. ky = &7,
18. ky = L

19. A} = max{(n — T), 4}
20. A} = max{&L (T — p)};
L
21. D: Diameter of circular specification region;
22. rc,f\/x,fx + (i — y)z,
23 Z‘ 1 rc,i

-ﬂc ;

24. MR = Z‘ 2 where, MR;’s are obtained from moving range chart;

25. osT = Md—F. Since for MR chart, information from two samples are considered
at a times, we have d, = 1.128;

26. ri = \/x; +7;

-
27. G = Ly /2l
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28. 7, = 2t

s

29. osrc = Mdl}C, where, MR values are obtained from the moving range chart of
the data set after the target hole center is shifted to the middle of the cluster of
actual hole centers;

1 Z:':] (rcviiﬁy.

cy n—1 ’

30. GrLrc =

31. ¢4, d> and d5 are the common constants of the literature of control chart which
are expressed as functions of the sample size ‘n’;

32, & = /%, — )+ (X, — )

33, 0 =130 A7

34. ‘p’ denotes the number of characteristics under consideration;

35. X = (X1, X, ...,X,)": Random vector characterizing the ‘p’ correlated quality
characteristics under consideration (Note that now onwards vectors will be
denoted by bold-faced letters);

36. D = (|uy — Mi|, |1y = Mo, i, — My|)"s

37. d = ((USL; — LSL,)/2, ((USL, — LSL,)/2, ..., (USL, — LSL,)/2)";

38. T=(T\,Ts,...,T,);

39. M = (M, M,,...,M,)";

40. T; is the target value, M; is the nominal value for the ith characteristic of the
item, for i = 1(1)p;

41. u and v are the scalar constants that can assume any non-negative integer value;

/ .
42, w=(uy, ty, - - ,up) : Mean vector of a ‘p’ variate process;
2
01 o112 e Glp
2

012 03 =+ O | | . . . .
43. £ = . . . is the dispersion matrix of a ‘p’ variate process;

Oip Oz *** Opp

3 Univariate Process Capability Indices for Asymmetric
Specification Limits

Often for the quality characteristics of nominal the best type, the respective upper
specification limit (USL) and lower specification limit (LSL) are symmetric with
respect to the corresponding target (7). However, this may not always be the case—
asymmetry in specification limits with respect to ‘7T is also quite common in
manufacturing industry. Such asymmetry may generate from a number of very
practical situations some of which have been discussed by Boyles (1994).
Sometimes, for particular quality characteristic of a product, the customer and or the
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design engineer is ready to allow more deviation from target towards a particular
specification limit than towards the other; generating asymmetry in the specification
limits. For example, in the context of drilling holes with hole diameter being the
quality characteristic of interest, it is easier to increase the diameter of a hole
through repeating the drilling operation than to shorten the existing hole diameter.
Therefore, here USL should be closure to target than LSL. Again, it may so happen
that, although initially a process starts with symmetric specification limits, after
some times, the customer and/ or the manufacturer opts for asymmetric specifica-
tion limits, to avoid unnecessary increase in production cost or due to some tech-
nical or financial issues. Finally, while transforming non-normal data into the
normal one, often the symmetric specification limits get converted into asymmetric,
owing to the same transformation.

Thus, the quality characteristics having asymmetric specification limits are not rare
in industries, though most of the PCIs, available in literature are only applicable to
quality characteristics with symmetric specification limits (Sect. 1). To address this
problem, Kane (1986) modified C,, and Cp by shifting one of USL and LSL so that the

new specification limits are symmetric with respect to the target and defined C; =

min(Z=LSL USL=T) and € = min(CPL*, CPU"), where, USL — T # T — LSL,

CPL* = L= LSL( — T|TL§| ) and CPU* = US3IU’T (1— ‘TL“‘ ). Later, Franklin
and Wasserman (1992) and Kushlar and Hurley (1992) proposed shifting both the
specification limits (T — Dy, T 4 Dy) to obtain symmetric ones (T & @), where,
Dy =USL — T, D; = T — LSL. However, the revised specification limits obtained
by such shifting are subsets of the original specification limits and hence assessment of

process capability based on these revised limits are often misleading.
S(USL—,u ;l—LSL)

Boyles (1994) proposed a new index as Sy, =
a smooth function which is defined as S(x,y) = @~ {2LL120) I P0N Chen and Pearn

(2001) generalized this index as S, (v) = S( \/:zjffl £, 2hy J‘; };(S;E )2), where, v > 0.
Although the properties of Sy were studied by Ho (2003), but due to its very com-
plicated nature, it has found very limited application in practice.

Similar to Cp,(u,v) of symmetric specification limits, for asymmetric specifica-

tion limits, Vannman (1997) defined the following two super-structures of PClIs:

where, S(x,y) is

T — M|~ ulp—T|

3y/o? +v(u—T)

d
Cov(u,v) =

and

— | — M| —ulu—T|

3v/a2 +v(u—T)?

d
Cpa(u,v) =
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However, Cpy(u,v) fails to capture the asymmetry of the loss function with
respect to ‘T”; while, Cpa(u, v) is not optimum on target.

To address these drawbacks of the PCIs defined so far for asymmetric specifi-
cation limits, Pearn (1998) proposed a new index analogous to Cpyy for asymmetric
tolerances which is given by

d* — F*
30

C = 3)
where, d* = min(Dy, Dy) and F* = max{%ﬁ,%ﬁ)}. Pearn and Lin (2000)
studied some properties of Cj and proposed a consistent and asymptotically

unbiased estimator which converges to a mixture of two normal distributions. Later
Chen and Pearn (2001) generalized Cj to a super-structure which is defined as

u,v) =m—F/——
b 3V 62+ vF?

where, F = max{d(gif) ,d(%")}. C;(m v) is optimum on target and also, high value

of C;(u,v) indicates high process yield—these are two of the most important
properties of any PCI irrespective of the nature of the respective specification limits.
Now, C;(u, v) involve parameters of the quality characteristics, viz., p and a2,

which are often unobservable. Hence, the plug-in estimator called C;(u, v) is used
for all practical purposes, where C’;(u,v) is obtained by replacing u and ¢ in

Eq. (4) by the sample mean (X) and the sample variance s respectively. However,
indiscriminate use of such plug-in estimators is not solicited as that may lead to
wrong assessment of the process capability. One needs to study the statistical
properties of these plug-in estimators. Pearn et al. (2001, 2004) have made thorough
studies of some of the distributional and inferential properties of C;k and C;mk'

Proportion of non-conformance (PNC) is another measure for assessing the
performance of a process apart from PCI. PNC measures the probability of
producing items which are non-conforming with respect to the preassigned speci-
fication limits. Thus, ability of establishing relationship between these two parallel
concepts of process performance analysis, is considered to be an added advantage
of using a particular PCI. For symmetric specification limits, PNC is expressed in
terms of C, and Cpy as follows:

p = 20(=3C,) (5)

p= O[-3(2Cy — Cp)] + @[-3Ciu] (6)
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Note that since C,, measures only the potential capability of a process, ‘p’ fails to

(A}

measure the actual PNC unless p = T; whereas ‘p”” measures the observable PNC.
In this context, potential capability is the capability a process that can at most be
attained given the current dispersion level and specification scenario. Chatterjee and

Chakraborty (2014) have explored analogous relationship between C;, C;k and
PNC, where, C,: =<

3.1 Relationship Between C['; and Proportion
of Non-conformance

When the process is on target and the distribution of the quality characteristic is
normal, the proportion of non-conformance can be defined as

Pyc = PIX > UIX ~N(T,0")| + PIX<LIX ~N(T,0")] = Pi + Py, say  (7)

For establishing relationship between C; and PNC, the following two situations
are considered based on the relative position of ‘7’ with respect to ¢, USL and LSL.
Case . d*=Dy=U-T
Here, C; = ?—g. From Eq. (7), Py =1— (D(CI;') and P, =1— (I>[3kC;], where,

Dy Dy
Dy’ Dy
of non-conformance is,

k = max{ }. Hence from Eq. (7), when p = T, the expression for proportion

Pyc =2—®(C)) — ®[3kC,] (8)

Case lI. d* =D;, =T — L
Here, C[Z =2 From Eq. (7), Py =1-— (I)(3kC;), Py=1-— @[3C,;’] and conse-
quently, the expression of Pyc is given by Eq. (8).

Thus, when u =T, the expression for PNC remains same irrespective of the
position of ‘7" with respect to x, USL and LSL. Also, for k = 1 and C; =1, we

have, Pnc = 0.0027 which is same as the value of ‘p’ obtained from Eq. (5), when
C, = 1. This is due to the fact that, for k = 1, the specification limits become

symmetric and hence C, = C;.
However, Pyc measures the proportion of non-conformance only when =T
and hence it is required to explore the relationship between PNC, C; and C;k

(similar to the case of symmetric specification limits) from a more general
perspective.
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3.2 Relationship Between C;k and Proportion
of Non-conformance

When u # T, PNC can be formulated as

P{c = 1—PIL<X<U|X~N(u,d)]
- 2_@[%(1 —Ry)] —@[%(1 —Ry)] ©)
=2-1 — I, say

where, Pﬁc denotes the expected/ observed PNC, Ry = %, R, = TD—Y‘,
I = @22 (1 —Ry)] and L, = ®[2 (1 — Ry)]. Based on the position of ‘7> with
respect to ¢, USL and LSL, there can be four mutually exclusive and collectively
exhaustive situations (see Wu et al. 2009) for each of which Chatterjee and
Chakraborty (2014) have established exact relationship between C;, C;k and P& as
follows:

Case I: d* = Dy and Ry <Ry, ie. u<T:

PRe =2 — O3kC, ] — ©[3{C, + (k+ 1)R.C,}] (10)
Case II: d* = Dy and Ry > Ry, ie. u>T:
Pc =2 — ®[3C,] — OB{kCyy + (k+ 1)RyC,}] (11)
Case III: d* =Dy and Ry > Ry, ie. u>T:
PR =2 — ®[3kC,] — O[3{Cpy + (k+ )Ry C,}] (12)
Case IV: d* = Dy and Ry <Ry, i.e. u<T:
Pre=2— D[3C,] — OB{kC,y + (k+1)R.C,}] (13)
In this context, Ry = Ry implies u = T and hence the specification limits become
symmetric about ‘7”. Here, one interesting point to note is that, unlike ‘p’ in Eq. (5),
here, Pnc does not ensure providing minimum observable proportion of
non-conformance; rather, it only measures the observed proportion of
non-conformance of the process when y = T'. In particular, the value of (Pxc — P&c)
increases with the increase in the value of ‘k’. Thus, contradicting the usual con-
vention, it may so happen that, a process, with asymmetric specification limits,

produces more non-conforming items when it is on target compared to the situation
when p = M and this is more clearly described in Fig. 1.
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Fig. 1 Asymmetric
specification limits with d
Pne > PEJC !

Non-conforming
Region

LSL u=M u=T USL

Chatterjee and Chakraborty (2014) have extensively studied the interrelationship
between the member indices of C;(u, v) and have observed that C; > C;;k > Cgmk

and Cp > Cpm >C

pmk> where equality is attained for u = M = T. Moreover, there is

no clear-cut relationship between C;;k and C;m. These are analogous to the
inter-relationship between the member indices of C,(u,v), as have been observed
by Kotz and Johnson (2002).

A mathematical expression for the threshold value of C; has also been developed
by Chatterjee and Chakraborty (2014). In this context, threshold value is one of the
most important features of a PCI from the interpretational view point. A process
with a PCI value beyond the threshold value is considered to be capable of pro-
ducing items within the pre-assigned specification limits; while that with a smaller
value of PCI with respect to the said threshold value is likely to be incapable.
Usually, threshold values are computed for the PCIs like C,, measuring potential
capability of a process. The common industrial practice is to consider ‘1’ as the
threshold value of a PCI, irrespective of the nature of the corresponding specifi-
cation limits. Chatterjee and Chakraborty (2014) have formulated the threshold
value of CI: as,

2k; .
ki +ko lfDU <D

”(T) _ ”(T)_ A
G, 10,00 =C" =1 2 D <Dy (14)

where, k; and k; are positive real numbers with k; # kp, such that k; = =L and

ky = % From Eq. (13), it is evident that, C;m, the threshold value of C;, is a
function of the degree of asymmetry of the specification limits and hence, con-
sidering ‘1’ as the threshold value of C;, without properly investigating the nature

of the specification limits leave room for over/under estimation of the actual
capability of a process.
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3.3 Example

In order to illustrate the theoretical aspects of the PCIs for asymmetric specification
limits discussed so far, we now consider a numerical example based on the data on
a high-end audio speaker component called Pulux edge manufactured in Taiwan
(Lin and Pearn 2002). For a particular model of Pulux edge, U = 5.950, L = 5.650
and T = 5.835. Lin and Pearn (2002) have collected 90 observations with the
corresponding summary statistics found to be as follows:

Sample size (n) = 90, sample mean (X) = 5.83 and sample standard deviation
(s)=0.023. Moreover, here Dy # D, indicating asymmetry in the specification limits
with respect to T. Based on this data, we compute the values of some of the PCIs and
the corresponding PNC values for both the symmetric and asymmetric specification
limits to make a comparative study of their performances when the actual specification
limits are asymmetric. Thus, C, =2.17,p = 7.515 x 10°"1, Cpy = 0.870, p' =
0.004527, C, = 1.6667, Pxc = 0.0477, Cpy = 1.6217 and  Pf = 9.0784x
103, Following the standard notations, here ‘hat’ (7)) is added to the usual PCIs and
others to denote their estimated values.

Thus, excluding C k. all the PCIs consider the process to be capable. The
threshold value of 6’; is found to be 0.7667 and since both 6‘; and E‘gk have values
higher than E’;(T), the process is likely to be capable. This assessment of the process
is also supported by P& as the ?’{i}c value is found to be considerably small. Also,
since here, p # T, Pnc is not applicable here.

Therefore 6,7 is not applicable here as p # T while E‘pk makes an incorrect
assessment of the process and hence they are not suitable here. On the other hand,
6‘;, E‘;k and f’ﬁc assess the capability of the process correctly. These argue in

favour of the selection of appropriate PCIs based on the nature of the specification
limits and other related aspects of a process.

4 Process Capability Indices for Unilateral (One Sided)
Specification Limits

The PCIs discussed so far, are primarily meant for quality characteristics of nominal
the best type and having bi-lateral specification limits. Quality characteristics of
smaller the better type (e.g., surface roughness, degree of radiation and so on) and
larger the better type (e.g., tensile strength, compressive strength and so on)
requiring unilateral (one-sided) specification limits are also common in various
manufacturing industries. However, there are only a few PCIs available in literature
to assess capability of such processes.
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Kane (1986) discussed about two such PCIs viz., Cpy = % and Cpp, = % As
is the relationship between C,, and ‘p’, given in Eq. (5), for unilateral specification
limits also, analogous relationships, like pV = ®(3Cpy) and p* = ®(3Cpy), hold
good between PNC, Cpy and Cpr, where, pU and p* denote the proportions of
non-conformance generated due to exceeding USL and LSL respectively, when
w=T. Also, 1 is usually considered as the threshold value of Cpy and Cpr. The
distributional as well as inferential properties of these two PCls, for both the single
and multiple sample information, have also been studied extensively (see Lin and
Pearn 2002, Pearn and Chen 2002, Shu et al. 2006). In fact, most of the research
works on PCIs for unilateral specification limits are based on Cpy and Cpr, only, due
to their computational simplicity. Chatterjee and Chakraborty (2012) have made a
thorough review of these PCIs for unilateral specification limits.

However, Cpy and Cpp, suffer from the following critical drawbacks:

1. Neither of Cpy and Cp, incorporate the concept of ‘T, the target value for the
corresponding variable under consideration, in their respective definitions. As a
result, they fail to measure the proximity of the process centering towards the
target.

2. Unlike C,, Cpy and Cpp can not be considered as the potential PClIs either, due
to the presence of the mean p in their definitions.

Therefore, despite being easy to compute, Cpy and Cpp, are difficult to interpret.
Like C,(u,v), defined in Eq. (2), Vannman (1998) has defined the following two
sets of superstructures of PCIs for unilateral specification limits:

USL—pu—u|p—T
Cpan(1,v) = L
3V a2 +v(u—T)

u—LSL—u|u—T)| (15)
Coal) =3 vy
and
vau (M, V) _ USL-T—ulp-T|
34/ 02 -T7)?
+v(u=T) (16)

T—LSL—u|u—T
Con(u,v) = o |2
3V a2 +v(u—T)

Later, Grau (2009) observed some drawbacks in these two superstructures. The
values of Cpyu(u,v) and Cpyi(u,v) are symmetric with respect to T which is not
desirable for an ideal PCI for unilateral specification limits. In this context, the basic
difference in the nature of asymmetric and unilateral specification limits is that for
asymmetric specification limits, deviation from T towards USL and LSL are not of
equal importance. However, in the context of the unilateral specification limits,
deviation from T towards the existing specification limit (USL or LSL, depending
upon the situation) is considered to be serious; while, deviation from T on the
opposite side of the said specification limit can not be considered as undesirable, at
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least from the point of view of the quality of the product. Rather, such products are
actually having better quality. Thus for both of these two types of specification
limits, the corresponding loss function can by no means be considered as
symmetric.

Again, for 0 <u <1, Cpau(u,v) and Cpa(u,v) are not optimum on target. Also,
for u>1, Cpyu(u,v) and Cpy(u,v) values become negative even before u reaches
U or L, which is highly undesirable. Therefore, neither of the superstructures of
PClIs for the processes with unilateral specification limits, defined in Egs. (15) and
(16), are suitable for practical applications.

Grau (2009) has proposed the following superstructure of PCIs for unilateral
specification limits, which is free from these drawbacks, and have also studied some
of its distributional properties.

U _ U-T-uAy,

G (u,v) = 3/ +vA72 (17)
L _ T-L-uAl

Cp (M, V) B 34/0% +vA;?

where, A}, = max{(p — T),Tk—*;]"}, Al = max{%7 (T — w)}. Also, k(> 1) quan-
tifies the amount of loss incurred due to deviation from T towards the opposite side
of the existing specification limit, where k; stands for &}, or k] depending upon the
situation. Note that C;’ (u,v) and CpL(u, v) are defined in such a way that the cor-
responding PCIs will be free from kj; and k] respectively, when the quality char-
acteristic value deviates from T towards the existing specification limit. Since Grau
(2009) did not suggest any mathematical formulation of %, its choice becomes
subjective, increasing the scopes for favourable manipulation in the values of
CJ(u,v) and C}(u,v). In order to eliminate such subjectivity in the definitions of
CIEJ (u,v) and C[f(u7 v), Chatterjee and Chakraborty (2012) have proposed a math-
ematical formulation of ;.

It is interesting to note that for unilateral specification limits, target is set to
maximize profit or to minimize loss. Thus, although deviation of u from target
towards the other side of the existing specification limit will definitely produce
items of better quality; the manufacturer is likely to incur a loss of profit per item
under constant selling price, since such production will require larger amount of
ingredient or higher degree of expertise or more sophisticated machinery. Chatterjee
and Chakraborty (2012) have applied this concept of loss of profit to formulate ;.

For the purpose of illustration, suppose the quality characteristic under consid-
eration is of smaller the better type and hence the corresponding process has only
USL. Also suppose for this process, there are ‘m’ stages through which loss of
profit can be incurred and let CY is the corresponding loss of profit for the ith stage,
where, i = 1(1)m. Here, one possible choice for the stages of loss of profit may be
per unit or some convenient fraction of the unit of measurement. Moreover, let ‘n’
denotes the total number of produced items among which n; items have the values
of the quality characteristic less than ‘7°, and the remaining n, items have the
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quality characteristic value greater than or equal to the target value such that n =
ny +ny with n; > 0. Also, ‘C’ is the constant selling price.
Then k7, can be formulated as

Selling Price Per Item

~ Average Loss of Profit Per Item

ky

C

== 703 (18)
a CIRY

where, CI5%! the total loss of profit due to deviation from ‘T” towards left, can be

defined as

ng o m

Ry =YY clly (19)
i=1

=

with

I

I — 1 if jth item belongs to the ith stage of loss of profit, Vi = 1(1)m,j = 1(1)n;,
Y710 otherwise.
Similarly, for quality characteristics of the larger-the-better type, k; can be
formulated as

C

1 Total
2 Cipl

k= (20)

where, CIp§' = Y77 37| CHy; CF is the loss of profit at the ith stage, when, there
exists ‘m’ such stages through which loss of profit (due to deviation of process
mean form ‘7" towards right i.e. towards the direction opposite to LSL with respect

to ‘T”) can be incurred and /;; has the same interpretation as before.

4.1 Example

To illustrate the impact of k; on CY(u,v) and C7 (u, v), we consider the data set on
polarized dependent loss (PDL) of wavelength multiplexer (see Pearn et al. 2009).
Here only the data corresponding to supplier I is considered, for which n =
105, jt =0.061 decibel (dB), 6 = 0.0049 dB and USL = 0.08 dB. Moreover,
although the original data set did not take into account the values of T, constant
selling price per item and stage of loss of profit per item; following Chatterjee and
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Chakraborty (2012), we have, T = 0.064 dB, C = $1.00 and loss of profit for per
0.001 dB deviation from T towards left is 0.02 dB. Then, for the present data set,
kj, = 8.5337.

Thus, C}E/(0,0) = 1.078, Cf,/(l,O) = 1.053, C;/(O7 1) = 1.075, Cg(l, )=
1.050, Cpyu(0,0) = 0.86and Cpyy (0, 1) = 0.90. Here, it is easy to observe that out of
the total number of 105 observations, 74 have the values of the quality characteristic
less than T = 0.064. As has already been discussed, these 74 items can not be con-
sidered as having inferior quality—the only problem here is in terms of loss of profit.
Now, since for u = 0,1 and v = 0, 1, all the CIE’ (u,v) values are found to be greater
than 1 which indicates that the process is performing satisfactorily and the loss of
profit is also under control. However, vau (u, v) does not take into account this aspect
of unilateral specification limits. Since, Cpy, (0, 0) and Cpyy (0, 1) merely measure the
proximity of u towards T, irrespective of the direction of such deviation, these PCIs
fail to assess actual process performance and consider the process to be incapable
which is not actually the case.

5 Process Capability Indices for Circular Specification
Region

Apart from the bi-lateral (both symmetric and asymmetric) and unilateral specifi-
cation limits, there is another type of specification limit which is known as circular
specification limit. Such specification limits can be observed in processes like
drilling holes (in manufacturing industries) or hitting a target (in ballistics). The
uniqueness of circular specification limits is that the so called USL and/or LSL do
not exist and consequently, the conventional PCIs are not applicable here.

Krishnamoorthi (1990) first proposed PCIs for processes with circular specifi-
cation limits which are defined below:

2
PC, :941%:3_16 %2
(21)
PC, = D’ ;

4[ /&) + (T-) + 3]

where, D is the diameter of the circular specification region, (a, b) is the targeted
center of the process and ¢ is the common standard deviation along the two axes X
and X, such that, when oy # 65, 0 =max(g1,0,). It is assumed that
(X1,X2) ~Na(pys iy, 67,03, p = 0). Note that, PC,, is defined analogous to C, and
it measures the potential capability of a process; while PCpx measures the actual
process capability when the specification region under consideration is circular in
nature.
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Bothe (2006) has proposed another set of PCIs for circular specification region
based on the concept of radial distance. He has considered average radial distance
between the centers of various drilled holes or the average radial distance of centers
of the drilled holes from the target center as the quality characteristic of interest and
has defined the following PCIs analogous to C, and Cy based on these radial
distances:

6 USL- ,uc
3‘7§T C
ﬁp — USSAL_'“C
OLT,C
G — USL-7 (22)
PK = 365T
P PK = U§L =
oLT

n
Zzlc

Here, uc = 'i; rci = \/(x,- —%)?+(y; —y)* and ‘n’ is the sample size.
Zl > MR.

Also, MR = ~ , MR;’s are obtained from moving range chart; ogt = 1%
or =, 72":,;5"{_’) =X Y R = Z’ L Gsre = MRe, where, MRe

values are obtained from the moving range chart of the data set after the target hole
location is shifted to the middle of the cluster of actual hole centers and d, is a

1 E” (ra—rc

function of the sample size ‘n’ and Grr,c = o pra and c4 is a constant

based on the sample size ‘n’.

Note that, for both these two sets of PCIs defined in Egs. (21) and (22), it is
assumed that the variation in the values of the quality characteristics along the two
axes are the same (homoscedastic) and also, these two axes are mutually inde-
pendent. However, in reality, due to several practical reasons such assumptions of
homoscedasticity and independence of X; and X are seldom valid. As a result, even
if the specification region is circular, the process region is elliptical in nature.
Neither of the PCIs defined so far take care of this problem. Moreover, under the
assumption of bivariate normality of (X;,X,), the distribution of radial distance is
no more normal—rather it follows circular normal distribution (Scheur 1962). Thus,
PCIs like C, and Cy are not suitable for assessing capability of such processes.
From this view point also, the PCIs defined in Eq. (22) are not suitable for circular
specification regions.

Chatterjee and Chakraborty (2015) have addressed these problems by defining a
superstructure of PCIs for circular specification region. Suppose X = (X, X,) ~
No(y, by, al, (72, p). Also, without loss of generality, suppose the target center of
the process is set at (0,0) point of the co-ordinate axes. Then, like Cp,(u,v) defined
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in Eq. (2), Chatterjee and Chakraborty (2015) have defined a superstructure of PCIs
for circular specification region as

-k 1
Cpeli) = e X e (23)
X3201024/1 = p? e K
where,  p=(u.n)  and @ =1Y0 4% wih 4=
\/(Xl,- — )+ (X — )’ = \/(Xi —w'(Xi — )y Xi = (Xu, X)) for i=1,
2,...,n and ‘n’ is the number of sample observations randomly drawn from a

process. Note that bold faced letters are used to denote vector valued variables.

Here C,. = C,:(0,0),Cpxc = Cpc(1,0),Come = Cpe(0,1) and  Comie =
Cp(1,1) are, by definition, analogous to C,, Cpx, Cpm and Cpmi respectively.

Note that C, .(u, v) is defined from a more general perspective compared to the
PCIs defined in Egs. (21) and (22) and hence it does not require the so called
assumptions of homoscedasticity and independence along the two axes. C, .(u, v) is
optimum on target as well which is a desirable property of a good PCI. Moreover,
for a fixed value of p, the values of all the member indices of C,.(u,v) decrease
with the increase in at least one of (rf and 0'%. Similar to the inter-relationships
between the member indices of C,(u,v) and C;(u, v) with u =0,1 and v =0, 1,
here also, it is easy to check that

Cp.c(u> V) < Cp,c(ua 0) < Cp.c(o> O)
Cpe(u,v) <Cpe(0,v) <C,0(0,0), Yu>0,v>0

and there is no clear-cut relationship between Cpi . and Cpp -

Since, similar to C,, C,. measures the potential capability of a process,
Chatterjee and Chakraborty (2015) have derived the expression for the threshold
value of C, . as

D
Cl.= (24)
’ 2><X§’2><amm>< 1 - p?

Thus, the threshold value of C, . is a function of 61,0, and p and hence is not
unique.
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D
29
circular and coincides with the specification region, C;_ . 7 1 and for this reason,

However, for p =0 and o, = 0, = %, although the process region becomes

Cp.(u,v) is not suitable when the correlation between the two axes is very low.
Again, similar to Cpx, Cpk is a yield based PCI and Chatterjee and Chakraborty

(2015) have established exact relationships between C,, ., Cpi . and PNC as follows.
When the process is on target, PNC can be formulated as

Pxc :P[(X—O)/Z_I(X—()) > @O)’Z(%ﬂ (25)
= P24 > 200~ VI,

where, A = (n — 1)S, S being the sample variance-covariance matrix.

However, in practice, often the assumption that jt = (0,0)" may not hold and in
such cases, Pnc measures only the minimum attainable PNC. Considering the more
general case, i.e. when ji # (0,0)’, Chatterjee and Chakraborty (2012) have derived
the expression for observed PNC as

D2
PE. = P[X’ZlX > |X~N2(,u,2)]

—p [Z(n ~ DVISICE . < \/Fl_z,z(x) X Lo s — 5_% % \/Funaa

(26)

where, X§.2n74 and F, > » denote respectively the upper o% point of a ¥? distribution
with (2n — 4) degrees of freedom and a F distribution with (2, 2) degrees of
freedom.

Moreover, based on the properties of circular normal distribution (refer Scheur
1962), Chatterjee and Chakraborty (2015) have derived the expressions for the
expectations and variances of the member indices of C,.(u,v) for u =0,1 and
v=0,1.

5.1 Example

To investigate the performance of C,.(u,v) for assessing capability of processes
having circular specification limits, we now consider a manufactured product and
we are concerned about the holes drilled subject to some specifications. 20 holes
were drilled and for each hole, the values of the corresponding X; and X,
co-ordinates of the centers of the holes were noted. Here, D = 10, X; = 2.766,
X, =2.776, 67 =0.408, 63 = 0.321 and p = 0.856. The complete data set is
available in Chatterjee and Chakraborty (2015) and Fig. 2 provides a



Univariate and Multivariate Process Capability Analysis ... 67

Fig. 2 Circular specification
region and the elliptical
process region

—— Circular Specification Region
© —| - - - Elliptical Process Region

I
-10 -5 0 5

diagrammatic representation of the process region and the corresponding specifi-
cation region.

Since 67 # 63 and the value of p is also considerably high, the PCIs defined in
Egs. (21) and (22) are not applicable here. Hence values of the member indices of
the superstructure C,.(u, v) are computed as follows:

Cpe = 3.8097, Cpc = 3.5184, Cpme = 0.7605, Cpmie = 0.7024, Pyc = 2x
108, PE. =0.0598 and CT . = 1.3613.

From the above computations it can be observed that C, . considers the process
to be potentially capable and this is also supported by the low value of Pyc.
However, all the other PCIs except Cp . consider the process to be incapable. Now,
from Fig. 2 it is evident that, the data points lie far away from the target center
(0, 0)/ and this is correctly reflected by the low values of Cpm and Cpmic. Also, a
considerable part of the process region lies outside the circular specification region
and this increases the value of Isﬁc. In fact, C‘pk,’c, being a yield based PCI, has
rightly reflected the incapability of the process though the high value of ﬁﬁc. Thus,
although the process is potentially capable, since it is highly off-centered, it is not
actually performing satisfactorily. Moreover, the apparent contradiction between
the values of C‘pk,c, Cpm,c and C'pmk,c argue for the judgemental use of PCIs as well
as the importance of diagrammatic representations of the process and specification
region to have a prima-facie impression about the health of the process.
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6 Multivariate Process Capability Indices

The common assumption of all the PCIs discussed so far, irrespective of the nature
of the specification limits, is that, there is only one measurable quality characteristic
of a manufactured product based on which the capability of the corresponding
process is to be assessed. However, the practical scenario is not that much sim-
plified. In fact, often it is seen that there are a number of measurable quality
characteristics corresponding to a particular item and these quality characteristics
are inter-related among themselves. For example, in an automated paint application
process, one of the major quality characteristics is paint thickness. However,
capability analysis of the said process, based on only paint thickness, may not
reveal the true capability of the process. In fact, in an automated paint application
process, there are a number of other quality characteristics like ability of surface
preparation and part location, paint thinner levels, paint lot differences, temperature
and so on which are inter-related to paint thickness at different degrees. Common
industrial practice is to apply univariate PCIs for each of these quality character-
istics separately and summarize the process capability as the arithmetic or geometric
mean of these individual PCI values. However, this approach may not be able to
assess the capability of the process accurately as it ignores the correlation structure
among the quality characteristics. This necessitates the application of multivariate
process capability indices (MPCI).

Despite having ample scope of industrial applications, there are only a few
MPCIs available in literature. Following Shinde and Khadse (2009), the MPCls,
defined so far, are either of the following types:

1. MPCIs defined as the ratio of tolerance region and process region; e.g., Taam
et al. (1993), Goethals and Cho (2011) and so on;

2. MPCIs expressed as the probability of non-conforming products; e.g., Chen
(1994), Khadse and Shinde (2006), Pearn et al. (2006), Shiau et al. (2013) and
SO on;

3. MPCIs based on principal component analysis; e.g., Wang and Chen (1998),
Wang and Du (2000), Shinde and Khadse (2009), Perakis and Xekalaki (2012),
Tano and Vannman (2012) and so on;

4. MPCIs based on the concept of non-parametric statistics; refer Polansky (2001);

5. Other approaches including vector representation of MPCls; e.g., Kirmani and
Polansky (2009), Shahriari et al. (2009); MPCls based on lowner ordering; refer
Kirmani and Polansky (2009) and so on.
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6.1 Cgs(u,v)—A Multivariate Process Capability Index
Jor Symmetric Specification Region

Most of the MPCls defined so far are difficult to compute and hence are meant for
theoreticians. Moreover, since shop-floor people are very much conversant with
classical univariate indices, some multivariate analogue of C,(u,v) would be more
palatable to them. Chakraborty and Das (2007) have defined a MPCI called
Cq(u,v), analogous to C,(u,v), to address these problems. For defining the new
MPCI, Chakraborty and Das (2007) have made the following realistic assumptions:

1. Underlying process distribution is multivariate normal with mean vector u and
dispersion matrix X.

2. The process has hyper-rectangular specification region.

3. For each process variable specification limits are symmetric about its mean.

4. T =M as otherwise the specification region will become asymmetric with
respect to the target.

Based on these assumptions, Cg(u,v) can be defined as,

1 d—uD)X'(d - uD
Co(u,v) == ( ) ; El ) (27)
3VI+v(p-=T)Z (u—T)
Where’ D= (|,u1 - M1|7 |:u2 - M2|7 ey |:up - MP')’;

d = (USL._LSL, USL,_LSL, USL,-LSL, .
- ( 2 2 9ty 2 ) s

)

T=(Ty,Ts,....T,)";

M= (Ml?MZ? c "Mp)/; n= (:ulnu27 c 'mup)

Here, T; is the target value, M; is the nominal value for the ith characteristic of
the item; ‘p’ denotes the number of characteristics under consideration and

> = Variance—covariance matrix of the variable X;

u; = Mean of the ith characteristic of the variable X, for i =1,2,...,p;

u = The mean vector of the variable X,

u and v are the scalar constants that can take any non-negative integer value.

Note that, the member indices of Cg(u,v), viz., C5(0,0), Cs(1,0), C5(0, 1) and
Cs(1,1) are analogous to the four classical PCIs Cp, Coks Com and Cpy of uni-
variate PCIs for symmetric specification limits.

Chatterjee and Chakraborty (2013) have observed that, foru = 0,1 and v = 0, 1,
the member indices of Cg(u,v) are inter-related among themselves through the
following relationships:

/
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and there exists no clear-cut relationship between Cg(1,0) and Cg(0, 1). Note that
such relationships are analogous to those between the member indices of C,(u, v).

Chatterjee and Chakraborty (2013) have also explored the relationship between
the minimum attainable proportion of non-conformance (Pnc) and Cg(0,0) and
have observed that

Pxc :2{1 —P[Y§9Cé(0,0)|Y~x§]} (29)

Since by definition, C5(0,0) is always non-negative, Eq. (26) establishes a
one-to-one relationship between C(0,0) and Pnc. Chatterjee and Chakraborty
(2013) have also made an extensive comparative study among the member indices
of Cg(u,v) and C,(u,v) to help these MPCIs gain higher amount of acceptability
among the practitioners.

6.2 Cy(u,v)—a Multivariate Process Capability Index
Jor Asymmetric Specification Region

Like in the univariate case, for processes with multiple quality characteristics also,
it is common to encounter processes with asymmetric specification regions, i.e.,
where, T # M. Although Grau (2007) proposed some MPCIs to assess the capa-
bility of such processes, his formulations are complicated in nature and hence are of
interest more for theoreticians than the shop-floor people who are ultimately going
to use these PCls.

As have been already discussed in Sect. 3, C;(u,v), defined in Eq. (4), is more
suitable for measuring capability of the processes with single quality characteristic
and asymmetric specification limits with respect to T as compared to the other PCIs
available in literature. Chatterjee and Chakraborty (2011) have defined an MPCI
called Cy(u,v), which generalizes C;(u, v) for processes with multiple quality
characteristics. Here, Cy(u, v) is defined as

1 /(@ —uG*Z 1 (d* — uG*
i) = —\/ . 30

min(DlL, D1U)
mil’l(DgL,Dzu)

where, d* = ) ie. df =min(D;,Dyy), fori=1(1)p with
min(DpL, DpU)
Dy Dy
Doy Dy,
Dy = ; and D; =

D,y D,
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USL,-LSL,
2
USL,-LSL,
Also d = 2 ie. dy = USLoLSL g — q(1)p
USL,-LSL,
2
For multivariate case ‘G’ can be defined as
aydy
axds T T .
G= .| where, a; = [max “‘D—WT’,T;)[L’"}],VL =1(1)p.
ayd,
a 0 O 0 0
0 a O 0 0
As such G = . .. . . . |d=Ad, say and its univariate
0 0 0 ... 0 g

counterpart is given as ‘F’ in (4).
Similarly, ‘F*’ can be generalized as G* = Ad* for the multivariate case. Also,

/)

for p=1, Cy(u,v)=C,(u,v). For u=0,1 and v=0,1, the authors have

observed following relationship between the member indices of Cy(u,v):
CM(Oa O) > CM(lv 0) > CM(lv 1)

Also, no clear-cut relationship exists between Cy;(1,0) and Cy(0, 1) like in the
case of C;(u, V).

Note that here Cy(0,0), which is independent of p, measures the potential
process capability and this is quite justified by the above relationships as all the

other member indices of Cy(u, v) can achieve at most the capability value projected
by Cu(0,0).

6.3 Example

To demonstrate the ability of Cy(u,v), for u =0, 1 and v =0, 1, we consider the
data set originally used by Sultan (1986). Here we have two correlated character-
istics viz., brinell hardness (H) and tensile strength (S). The USL and LSL for ‘H’
are 241.3 and 112.7 respectively; while for “S’, these values are 73.30 and 32.70
respectively. Also, the target vector for the said process is T = (177,53)". Thus,
T = M and hence Cg(u,v) will be applicable here.
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A random sample of size 25 is drawn from the process and the corresponding
summary statistics are as follows:

n=25 X= (5127.;'126)’ 3= (833;;5 222233) and hence the observed
correlation coefficient between ‘H’ and ‘S’ is, p = 0.8338 which is quite high.
Thus, Cg(0,0) = 1.2181,C6(1,0) = 1.1971,Cs(0,1) = 1.1870 and Cg(1,1) =
1.1666. Hence we conclude that the process is capable. Also, the computed MPCI
values follow the interrelationship established in Eq. (28). These strongly suggest
that the process is performing satisfactorily.

However, before assessing the capability of the process, we need to check the
validity of the assumption of multivariate normality of the present data. The p value
associated with Shapiro—Wilk test (refer Shapiro and Wilk 1965) is 0.006764 and
that with Royston’s test (refer Royston 1983) is 0.02586. Since both of these p values
are less than 0.05, it is logical to expect that the underlying distribution of the present
data set is not multivariate normal (refer Chatterjee and Chakraborty 2013).

In order to assess the capability of the process, the data is transformed using
Box—Cox Power Transformation (refer Box and Cox 1964). For the transformed
data, p value corresponding to the Shapiro—Wilk multivariate normality test is found
to be 0.07627; while that using Royston’s test is 0.1103. Therefore, it is logical to
expect that the transformed data set indeed follow multivariate normal distribution.

Moreover, since the data set has been transformed to have multivariate normal
distribution, it is now required to transform USL, LSL and T, by virtue of the same
transformation. The transformed specification limits and targets for Hyey and Spey
are as follows:

USLy,,, = 240.3 USLg = 2685.945
LSLy,, = 111.7 LSLg . = 534.145
Ty, =176 Ts,.. = 1404.000

Thus, although, apparently the specification region was symmetric with respect
to the target vector, the transformed specification region is asymmetric about the
transformed target vector, viz., Tnew = (Th,.,, Ts,.,) = (177,1404).

For the transformed data, d = (64.3,1075.9), d* = (64.3,869.855),

0.0031 0 L
A= < 0 0.0228>’ G = Ad = (0.2,24.5868) and G* = Ad™ = (0.2,19.8782),
338 4435.277
4435277 81311.074 )°
Hence, E‘M(O,O) = 1.1672, E‘M(l,O) = 1.1623, GM(07 1)=1.155] and

Cyu(1,1) = 1.1503. Also, the threshold value of Cj;(0,0) is computed as 1.1672.
Thus, the process is potentially just capable as the threshold value coincides with

the value of Cy(0,0). However, all of Cp(1,0), Cy(0,1) and Cy(1,1) have

i = (176.20,1384.122) and :(
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values lower than the threshold value. This indicates that the actual capability level
of the process is not satisfactory.

Thus, assertion of the underlying distribution of the quality characteristic(s) is
utmost necessary before assessing the capability of a process.

7 Process Capability Indices for Non-normal Statistical
Distributions

As has been observed by Kotz and Johnson (2002), the assumption of normality of
the underlying statistical distribution of the concerned quality characteristic, is one
of the basic assumptions for defining process capability indices, irrespective of the
nature of the specification limits. Despite of giving some computational advantage,
such normality assumption is not valid in many practical situations.

For example, for quality characteristics of smaller the better type (like surface
roughness, flatness and so on), for which only USL is available, some times, the
quality characteristic has a skewed distribution with a long tail towards the larger
values (refer Vannman and Albing 2007).

Clements (Clements 1989) first addressed this problem and suggested replacing
60 by the length of the interval between the upper and lower 0.135 percentile points
of the actual distribution. The author redefined estimators of C, and Cyy, for quality
characteristics with non-normal statistical distributions as follows:

/ U—-L
C =— 31
b élfo:_éot ( )

,_d—1s — M|
P (glfac - Qac)/z ( )

where, £,_, and ¢, are the upper and lower o percentiles of the distribution of the
corresponding random variable X and &g 5 is the corresponding median. Generally,
o = 0.00135 is considered for computational purposes.

Following Clements’ (1989) approach, Pearn and Kotz (1994), redefined the
estimators of Cpp, and Cppi for non-normal quality characteristics as,

/ — L
c - v (33)

" ol

/ U-M M-—-L
C o = min , (34)
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Pearn et al. (1999) generalized these indices for asymmetric specification limits.
Wright (1995) proposed the following PCI which is sensitive to skewness:

=
C, = ;
3y1+ (50 + VB

where, \/ﬁT = aﬂ% is a widely used measure of skewness and p; is the third order
raw moment of the corresponding random variate ‘X’.

However, the quantile or percentile based approach of dealing with
non-normality, while measuring capability of a process, suffers from a basic
problem. Often these PCIs involve extreme percentiles viz., 99.73th or 0.27th
percentiles. However, accurate estimation of these extreme percentiles require a
huge amount of data, which is often difficult to obtain, especially for processes
requiring destructive testing (refer Pearn et al. 1992). Wu et al. (1998) have
observed that, PCIs based on Clements’ approach fail to measure the capability of a
process accurately, especially, when the underlying distribution of the concerned
quality characteristic is skewed.

Another approach of dealing with non-normality is to transform the original
non-normal data into a normal one through the use of appropriate transformations
and then apply the PCIs defined for normal data. Some of the statistical transfor-
mations, which are available in literature, are

QI

(35)

1. Johnson’s (1949) transformation, based on the method of moments;

2. Box—Cox’s (1964) power transformation;

3. Somerville and Montgomery’s (1996) square-root based transformation for
skewed distributions;

4. Hosseinifard et al.’s (2009) root transformation method

Farnum (1996) has extensively discussed the use of Johnson’s transformation in
the context of non-normal process data. Yang et al. (2010) have carried out a
comparative study between the performances of Box—Cox transformation and
Johnson’s transformation in assessing capability of a process.

One can also choose a process distribution from a smaller family of distributions
such as gamma, lognormal or weibull which in turn, simplifies the corresponding
inferential problem. Rodriguez (1992) have enlisted the following advantages of
using families of distributions for computing PCIs of non-normal processes:

1. Method of maximum likelihood can be used to have stable and straight forward
estimation of the concerned parameters.

2. Since the method of maximum likelihood yields asymptotic variances for esti-
mates of the parameters, it can be used to construct confidence intervals for the
plug-in estimators of the PCls.

3. For various families of distributions like gamma, lognormal and weibull,
goodness-of-fit tests based on empirical distribution functions are also available.
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4. For standard families of distributions, estimated values of the percentiles and
proportion of non-conformance, related to the plug-in estimators of the PCls,
can be easily computed using standard results.

It is interesting to note that ‘potential capability’ means ‘possibility of achieving’
rather than ‘actually achieving’ (refer Kotz and Johnson 2002). Veevers (1998) has
used the term ‘viability’ to represent ‘capability potential’ and has proposed a
viability index from a more general perspective, as compared to C,, in a sense that
the viability index is neither restricted to normal distribution of ‘X’ nor even to
univariate situations.

The univariate viability index is defined as

w
Vi=5, (36)
where, ‘w’ is the ‘window of opportunity’ measured by the length of interval of 0
for which the distribution of (X 4 0) would generate an expected PNC not greater
than the conventional 0.27 %.
Under the assumption of normality of the quality characteristic under
consideration,

M—(d—-30)<u<M+(d-30) (37)

i.e. the window of opportunity for u can be defined as, w = 2(d — 30) and the
corresponding viability index will be

V. — 2(d — 30)
T2 (38)
1
:1 _—
G

Unlike most of the PCIs, V; can assume negative values. If V; is less than zero,
there is no possibility of attaining a PNC value of 0.27 % or lower and hence, the
process is considered to be ‘non-viable’.

For processes with unilateral specification limits also, substantial research work
has been done to assess the capability of a process when the underlying statistical
distribution is non-normal. Vannman and Albing (2007) modified Cpyy(u,v) (see
Eq. (16)) for the case, where the quality characteristic has a skewed distribution with
a long tail towards large values and a ‘USL’ with target set at ‘0, i.e. the quality
characteristic has a skewed zero-bound distribution. This superstructure is defined as

USL

Cuva(t,V) = ———
\/ q%—r + VCI(z).S

(39)
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where, v> 0 and g, is the tth quantile of the quality characteristic. The parameter t
should be small and chosen in a suitable way, e.g. T = 0.0027.

However, Chatterjee and Chakraborty (2012) have observed the following
drawbacks in this superstructure:

1. Vannman and Albing (2007) have modified only Cpyu(u,v). Neither Cpau(#,v)
was modified nor any justification for omitting the same was given. However, as
has been pointed out by Grau (2009), Cpyu(u,v) is not suitable for assessing
capability of a process with unilateral specifications.

2. There is room for studying whether considering T = 0.0027 is justified even if
the underlying distribution of the quality characteristic is not normal.

3. Some constants of Cpy,(u,v) were omitted just for simplicity without studying
the impact of such omission.

4. Cwma(t,v) fails to perform if the target is other than ‘0’.

5. The ideal values of v have not been studied.

Albing (2009) has modified the superstructure Cya(t,v) which is defined in
Eq. (36) for the quality characteristic under Weibull distribution, as follows:

USL
Cumaw(t,v) = (40)

a (ln(%)’z) + v(an)%

where, ‘a’ is the scale parameter and ‘b’ is the shape parameter of a two-parameter
Weibull distribution. However, since this super-structure is an extension of
Cma(1,v), it inherits the drawbacks of Cwma(t,v) as listed above. Moreover,
Cmaw(7,v) is valid only when the underlying distribution of the quality charac-
teristic is Weibull. It fails to perform in case of all the other types of statistical
distributions.

Rodriguez (1992) has also suggested other methods like goodness-of-fit,
quantile-quantile plot, kernel density estimation and comparative histograms to
assess capabilities of non-normal processes. For a thorough review of the PCIs for
non-normal distributions, one can refer to Pearn and Kotz (2007); Tang and Than
(1999) and the references there-in.

Finally, the capability assessments for multivariate processes with non-normal
process distributions have been studied by Abbasi and Niaki (2010), Ahmad et al.
(2009), Polansky (2001) and so on.

The example considered at the end of Sect. 6.2 can be considered here as well.
Recall that, there we have transformed the multivariate non-normal data into a
multivariate normal one and then applied Cy(u,v). The MPCIs discussed in the
present section can also be used for this purpose. In particular, Polansky (2001)
used the same data and concluded that the performance of the process is not
satisfactory, which supports the observations made by Chatterjee and Chakraborty
(2013). Moreover, the approach of transforming the data to multivariate normality
and then applying Cy(u,v) is easier to execute as compared to using Polansky’s
(2001) MPCI.
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8 How to Check Univariate and Multivariate Normality
of Data

Asserting the underlying distribution of the quality characteristic under consider-
ation plays a major role in capability assessment of a process. Often, in practice,
PCIs for univariate and multivariate normal distributions are used to assess the
capability of a process, without exploring the actual statistical distribution of
the concerned quality characteristic. This may lead to wrong judgement of the
actual capability of a process. Hence proper testing of the normality assumption of
the available data is utmost solicited.

Now a days, such checking of normality is possible through almost all the
statistical softwares available in market, viz., R, SPSS, STATISTICA, MINITAB,
SAS, MATLAB and so on. Among these, R is a open source and hence can be
freely downloaded from internet. We shall now discuss the procedure of testing
normality through the statistical package R.

Following are some functions and packages in R, which deal with univariate and
multivariate normality testing:

(i) Shapiro-Wilk test (Shapiro and Wilk 1965) for univariate normality can be
done using the function shapiro.test.

(i) ggnorm is a function that produces a normal quantile—quantile (QQ) plot of a
data. The corresponding qqline adds a line to a ‘theoretical’, by default nor-
mal, quantile—quantile plot which passes through the first and third quartiles.

(iii) For testing multivariate normality of a data, one can use the library MVN
which provides functions for Mardia’s multivariate normality test (refer
Mardia 1970, 1974) and Royston’s multivariate normality test (refer Royston
1983).

(iv) Generalized Shapiro—Wilk test for multivariate normality (refer Royston 1983
and Villasenor-Alva and Gonzalez-Estrada 2009) can be carried out using
libraries like mvShapiroTest and mvnormtest.

Also, to transform a non-normal data into a normal one, one can use the library
alr3 for Box—Cox transformation (refer Box and Cox 1964) of the data.

9 Concluding Remarks

This chapter deals with measurement of process capability analysis for different
situations by mostly suggesting appropriate indices for a given situation. However,
there are criticisms for making process capability index as the sole measure of the
capability of the process. One can refer to Gunter (1989), Dovich (1991), Carr
(1991), Herman (1989), Pignatiello and Ramberg (1993) and many others. Some
even suggested that none of the so called PCIs adds any knowledge or understanding
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about the process beyond that contained in the equivalent basic parameters like y, o,
target value and the specification limits.

The main problem seems to be that a PCI is taken as a one-time measure or a
snap shot of the process and is highly dependent on the chosen sample. This leads
to a fear of manipulation which is genuine. We suggest that for a PCI to be
calculated, a necessary condition to be fulfilled is that the process should be stable.
A sufficient condition could be that the PCI, calculated over a period of time should
show stability. This requires an appropriate control charting technique for each PCI
depending on the type of distribution a PCI would follow. The authors are now
developing these control charts which will settle the issue.
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