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Abstract: The purpose of this paper is to introduce the notion of derivation, differential

ideal, differential k-ideal (differential h-ideal) in ternary semiring and to study the validity of

some of the results on prime ideals and prime radicals of ternary semirings replacing ideals

by differential ideals, radicals by differential radicals, ternary semirings by differential ternary

semirings.Among others we deduce that a radical differential ideal I in a differential ternary

semiring is the intersection of all prime differential ideals containing I. Also we deduce that in

a differential ternary semiring satisfying ascending chain condition on radical differential ideals

any radical differential ideal is expressible as the intersection of finite number of differential

ideals.
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1. Introduction and Preliminaries

A nonempty set S together with a binary operation called addition and
ternary multiplication denoted by juxtaposition, is said to be a ternary semiring
[1] if S is an additive commutative semigroup satisfying the following conditions:

(i) (abc)de = a(bcd)e = ab(cde),

(ii)(a + b)cd = acd+ bcd,

(iii) a(b+ c)d = abd+ acd,

(iv) ab(c+ d) = abc+ abd, for all a, b, c, d, e ∈ S.

The set Z− of all negative integers, with usual binary addition and ternary
multiplication forms a ternary semiring.

This paper is sequel to our study of ternary semiring accomplished in [6].
The notion of ternary semiring was introduced by T. K. Dutta and S. Kar [1]
in the year 2003, as a natural generalization of ternary ring, introduced by W.
G. Lister [5] in 1971. In [6], among others, we have studied some important
properties of prime radical of an ideal (a k-ideal and an h-ideal) in ternary
semiring.Since ternary semiring is also a generalization of semiring, one of the
important motivation of the present paper is [7]. The purpose of this paper
is as stated in the abstract. We see that most of the results of [6] are valid
in differential ternary semiring when ideal, k-ideal, h-ideal, prime ideal, prime
radical are respectively replaced by differential ideal, differential k-ideal, differ-
ential h-ideal, differential prime ideal, differential prime radical.Among others,
the important results are Theorems 2.30, 2.31,2.32, 2.33, 2.34. For most of the
preliminaries we refer to [6] and its references. But some important notions are
recalled at appropriate places.

2. Derivation in Ternary Semirings

Definition 2.1. A ternary semiring S is said to be commutative if x1x2x3 =
xσ(1)xσ(2)xσ(3) for all x1, x2, x3 ∈ S and σ ∈ S3.

Example 1. Let T be the set of all continuous functions f : X → R
−

where X is a topological space and R
− is the set of all negative real numbers.

Now we define a binary addition and ternary multiplication on T by:

(i) (f + g)(x) = f(x) + g(x)

(ii) (fgh)(x) = f(x)g(x)h(x), for all f, g, h ∈ T and for all x ∈ X.

Then together with this binary addition and ternary multiplication T forms
a ternary semiring and this ternary semiring is commutative.
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Definition 2.2. [1] Let S be a ternary smiring. If there exists an element
0 ∈ S such that 0 + x = x and 0xy = x0y = xy0 = 0 for all x, y ∈ S, then ‘0’
is called the zero element or simply the zero of the ternary semiring S. In this
case we say S is a ternary semiring with zero.

Example 2. Z
−
0 , the set of all negative integers with zero forms a ternary

semiring with zero element ‘0’, where the usual addition, usual multiplication
of integers are respectively the binary operation and ternary operation.

Definition 2.3. [1] Let S be a ternary semiring. If there exists an element
e ∈ S such that eex = exe = xee = x for all x ∈ S, then ‘e’ is called a unital
element of the ternary semiring S.

Example 3. Let T be the set of all real numbers and k be a fixed number
in T . If we define a binary addition and ternary multiplication on T respectively
by a + b = 0 and abc = a + b + c + k for all a, b, c ∈ T , then with this binary
addition and ternary multiplication, T is a ternary semiring with −k

2 as a unital
element.

Throughout this paper unless otherwise stated a ternary semiring means
commutative ternary semiring with zero.

Definition 2.4. Let S be a ternary semiring. A mapping d : S → S (d(a)
is denoted by a

′

for all a ∈ S) is said to be a derivation on S if

(i) (a1 + a2)
′

= a
′

1 + a
′

2 for all a1, a2 ∈ S,

(ii) (a1a2a3)
′

= a
′

1a2a3 + a1a
′

2a3 + a1a2a
′

3 for all a1, a2, a3 ∈ S,

(iii) 0
′

= 0,

(iv) e
′

= 0, provided S has unital element e.

We call d(a), that is a
′

the derivative of a.

Note. For every ternary semiring S there exists a derivation d on S, viz,
d(s) = 0 for all s ∈ S. This derivation is called the trivial derivation.

Definition 2.5. A ternary semiring together with a non trivial derivation
is said to be a differential ternary semiring.

Example 4. Let U =
{

[

a b
0 a

]

: a, b ∈ Z
−
0

}

. Then U is a ternary semir-

ing with respect to usual matrix addition and ternary matrix multiplication.

We define d : U 7→ U by

[

a b
0 a

]

7→

[

0 b
0 0

]

. Then we can easily verify

that d is a nontrivial derivation on U . Thus U becomes a differential ternary
semiring.

The following result can be easily deduced using definition of derivation
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where trivial derivation acts as identity.

Proposition 2.6. Let S be a ternary semiring and D denote the set of
all derivations on S. We define (D1 +D2)(x) = D1(x) +D2(x) for x ∈ S and
D1,D2 ∈ D. Then (D,+) is a monoid.

Theorem 2.7. In any differential ternary semiring S, the elements with
derivative zero forms a ternary subsemiring of S.

Proof. let C = {x ∈ S : x
′

= 0}.

Clearly 0 ∈ C. So C is nonempty.

Let a, b, c ∈ C.

Then a
′

= 0, b
′

= 0, c
′

= 0.

Now (a+ b)
′

= a
′

+ b
′

= 0 + 0 = 0.

and (abc)
′

= a
′

bc+ ab
′

c+ abc
′

= 0bc+ a0c+ ab0 = 0 + 0 + 0 = 0.

Thus a+ b ∈ C and abc ∈ C.

Hence C is a ternary subsemiring of S.

Definition 2.8. [4] An additive subsemigroup I of a ternary semiring S
is called a left ( right, lateral) ideal of S if s1s2i ( respectively is1s2, s1is2) ∈ I
for all s1, s2 ∈ S and i ∈ I. If I is a left, a right, a lateral ideal of S, then I is
called an ideal of S.

Example 5. Let M2(Z
−
0 ) be the ternary semiring of all 2 × 2 square

matrices over Z
−
0 and I =

{

[

a b
c d

]

: a, b, c, d ∈ 2Z−
0

}

. Then I is an ideal of

M2(Z
−
0 ).

Definition 2.9. [1] An ideal I of a ternary semiring S is called a k-ideal
if x+ y ∈ I , x ∈ S, y ∈ I imply that x ∈ I.

Example 6. In the ternary semiring Z
−
0 of all non negative integers with

zero, the subset P =
{

3k : k ∈ Z
−
0

}

is a k-ideal.

Definition 2.10. [1] An ideal I of a ternary semiring S is called an h-ideal
if x+ y1 + z = y2 + z, x, z ∈ S and y1, y2 ∈ I imply x ∈ I.

Definition 2.11. If d is a nontrivial derivation on a ternary semiring S
then an ideal I of S is said to be a d-differential ideal of S if a

′

∈ I whenever
a ∈ I.

We simply write differential ideal instead of d-differential ideal.

Definition 2.12. A k-ideal (h-ideal) which is also a differential ideal is
said to be a differential k-ideal (h-ideal).
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Example 7. With same notation as in Example 4 we take

I =
{

[

0 a
0 0

]

: a ∈ Z
−
0

}

.

Then I is a differential ideal of U . In fact here I
′

= I.

It is easy to deduce the following.

Theorem 2.13. In a differential ternary semiring intersection of any
collection of differential ideals (differential k-ideals, differential h-ideals) is again
a differential ideal (differential k-ideal, differential h-ideal).

Definition 2.14. [1] An equivalence relation ρ on a ternary semiring S is
said to be a congruence on S if the following conditions hold:

(i) aρa1 and bρb1 ⇒ (a+ b)ρ(a1 + b1) (ii) aρa1, bρb1, cρc1 ⇒ (abc)ρ(a1b1c1)
for all a, b, c, a1, b1, c1 ∈ S.

Definition 2.15. [1] Let I be a proper ideal of a ternary semiring S.
Then the congruence on S denoted by ρ1 and defined by sρ1s1 if and only if
s+ a1 = s1 + a2 for some a1, a2 ∈ I and s, s1 ∈ S in called Bourne congruence
on S defined by the ideal I.

The Bourne congruence class of an element s ∈ S is denoted by s/ρ1 or
simply by s/I and the set of all such congruence classes of S is denoted by S/ρ1
or simply by S/I.

Remark. It should be noted that for any proper ideal I of S and s/I is
not necessarily equal to s+ I = {s+ a : a ∈ I} but surely contains it.

Definition 2.16. [1] For any proper ideal I of a ternary semiring S if the
Bourne congruence ρ1 defined by I is proper then we can define addition and
ternary multiplication in S/I by (a/I+ b/I) = (a+ b)/I and (a/I)(b/I)(c/I) =
(abc)/I for all a, b, c ∈ S. With these two operations S/I forms a ternary
semiring which is called the Bourne factor ternary semiring or simply the factor
ternary semiring.

Theorem 2.17. Let S be a ternary differential semiring and I be a ideal
of S. Then the Bourne factor ternary semiring S/I is a differential ternary
semiring.

Proof. We define a mapping d : S/I → S/I by d(s/I) = s
′

/I, where s
′

is
the derivative of s in S.

Let s1, s2 ∈ S.

Then d(s1/I + s2/I) = d((s1 + s2)/I)
= (s1 + s2)

′

/I
= (s

′

1 + s
′

2)/I



784 J. Sircar, M. Sultana, S.K. Sardar

= s
′

1/I + s
′

2/I
= d(s1/I) + d(s2/I).

d((s1/I)(s2/I)(s3/I)) = d(s1s2s3/I)
= (s1s2s3)

′

/I
= (s

′

1s2s3 + s1s
′

2s3 + s1s2s
′

3)/I
= (s

′

1s2s3/I) + (s1s
′

2s3/I) + (s1s2s
′

3/I)
= (s

′

1/I)(s2/I)(s3/I) + (s1/I)(s
′

2/I)(s3/I) + (s1/I)(s2/I)(s
′

3/I)
= d(s1/I)(s2/I)(s3/I)+(s1/I)d(s2/I)(s3/I)+(s1/I)(s2/I)d(s3/I)

So d is a derivation on S/I.

Hence S/I is a differential ternary semiring.

Definition 2.18. [2] A proper ideal P of a ternary semiring S is called
a prime ideal of S if for any three ideals A,B,C of S, ABC ⊆ P implies that
A ⊆ P or B ⊆ P or C ⊆ P .

Definition 2.19. [3] The prime radical of an ideal I in a ternary semiring
S is denoted by β(I) and is defined to be the intersection of all prime ideals of
S each of which contains I.

Proposition 2.20. [6] In a commutative ternary semiring S, the prime
radical of an ideal I, β(I) = {x ∈ S : x2n+1 ∈ I, where n is an integer and
n ≥ 0 }.

Definition 2.21. [6] An ideal I in a ternary semiring S is said to be a
prime radical ideal if β(I) = I.

In what follows, for simplicity, we write radical ideal instead of prime radical
ideal.

Definition 2.22. A radical ideal (k-ideal, h-ideal) which is also a differ-
ential ideal is called a radical differential ideal (k-ideal, h-ideal).

Theorem 2.23. If abc lies in a radical differential k-ideal I of a ternary
semiring S, then a

′

bc ∈ I, ab
′

c ∈ I, abc
′

∈ I.

Proof. Let abc ∈ I. Then (abc)
′

∈ I i.e., (a
′

bc + ab
′

c + abc
′

) ∈ I. Which
implies abc

′

abc
′

(a
′

bc+ab
′

c+abc
′

) ∈ I i.e., (abc
′

)2a
′

bc+(abc
′

)2ab
′

c+(abc
′

)3 ∈ I.
Now (abc

′

)2a
′

bc ∈ I, (abc
′

)2ab
′

c ∈ I. Hence (abc
′

)3 ∈ I (cf. Definition 2.9).
Consequently, in view of Proposition 2.20, abc

′

∈ I. Similarly we can prove
a
′

bc ∈ I, ab
′

c ∈ I.

We check the validity of Theorem 2.14, Theorem 2.15 of [6] in the present
content.
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Theorem 2.24. Let I be a radical differential k-ideal of a ternary semiring
S and U , V are any two subsets of S. Then

T = {x ∈ S : xUV ⊆ I}

is a radical differential k-ideal.

Proof. Clearly T is an ideal of S.
Let x ∈ T . Then xuv ∈ I, for all u ∈ U, v ∈ V . Then by Theorem

2.23, x
′

uv ∈ I, xu
′

v ∈ I, xuv
′

∈ I. Hence x
′

uv ∈ x
′

UV ⊆ I. So x
′

∈ T .
Consequently, T is a differential ideal of S. The rest of the proof is similar to
that of Theorem 2.14 [6].

The following is the h-ideal analogue of Theorem 2.24 whose proof is omitted
as it follows in a similar fashion as that of Theorem 2.24.

Theorem 2.25. Let I be a radical differential h-ideal of a ternary semiring
S and U , V are any two subsets of S. Then

T = {x ∈ S : xUV ⊆ I}

is a radical differential h-ideal.

Now by using Proposition 2.20, Definition 2.9, 2.10 and 2.21 we deduce the
following result.

Proposition 2.26. In a differential ternary semiring S, the intersection
of any collection of radical differential k-ideals (h-ideals) is again a radical dif-
ferential k-ideal (respectively h-ideal).

Definition 2.27. [1] A nonempty subset A of ternary semiring S is called
an m-system if for each a, b, c ∈ A there exist elements x1, x2, x3, x4 of S such
that ax1bx2c ∈ A or ax1x2bx3x4c ∈ A or ax1x2bx3cx4 ∈ A or x1ax2bx3x4c ∈ A.

Example 8. Let S =
{

[

a b
0 a

]

: a, b ∈ Z
−
0

}

and A =
{

[

0 a
0 0

]

: a ∈

Z
−
0

}

. Then A is an m-system.

Definition 2.28. Let S be a ternary semiring and A be any subset of
S. The differential ideal generated by A is denoted by {A} and defined to be
intersection of all differential ideals of S which contains A.

For simplicity we write {A ∪ {a}} as {A, a}.
Note. In order to avoid any possible confusion we note here that in [1],

{A, a} denotes radical ideal generated by {A ∪ {a}}.
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Theorem 2.29. Let P be an m-system in a differential ternary semiring
S and I be differential ideal of S which does not meet P . Then I is contained
in a maximal differential ideal Q of S which does not meet P and such Q is
prime.

Proof. Let U be the set of all differential ideals of S containing I and none
of which meets P .

Then U is a poset with respect to set inclusion relation. Then Zorn’s lemma
ensures that U has a maximal element Q (say).

Therefore P ∩ Q = φ. If possible let Q is not prime, then there exists
a, b, c ∈ S such that a /∈ Q, b /∈ Q, c /∈ Q but abc ∈ Q. Then {Q, a}, {Q, b},
{Q, c} are differential ideals properly containing Q.

Then by maximality of Q, {Q, a}∩P 6= φ, {Q, b}∩P 6= φ and {Q, c}∩P 6= φ.

Let p1 ∈ {Q, a}∩P, p2 ∈ {Q, b}∩P, p3 ∈ {Q, c}∩P . Since P is an m-system
there exist s1, s2, s3, s4 ∈ S such that p1s1p2s2p3 ∈ P or p1s1s2p2s3s4p3 ∈
P or p1s1s2p2s3p3s4 ∈ P or s1p1s2p2s3s4p3 ∈ P . If p1s1p2s2p3 ∈ P then
p1s1p2s2p3 ∈ {Q, a}{Q, b}{Q, c} ⊆ {Q, abc} ⊆ Q, which contradicts the fact
that P∩Q = φ. If p1s1s2p2s3s4p3 ∈ P then p1s1s2p2s3s4p3 ∈ {Q, a}{Q, b}{Q, c} ⊆
{Q, abc} ⊆ Q, which contradicts the fact that P ∩Q = φ. If p1s1s2p2s3p3s4 ∈ P
then p1s1s2p2s3p3s4 ∈ {Q, a}{Q, b}{Q, c} ⊆ {Q, abc} ⊆ Q, which contradicts
the fact that P ∩ Q = φ. If s1p1s2p2s3s4p3 ∈ P then s1p1s2p2s3s4p3 ∈
{Q, a}{Q, b}{Q, c} ⊆ {Q, abc} ⊆ Q, which contradicts the fact that P ∩Q = φ.
Thus in any case we arrive at a contradiction.

Consequently, Q is prime.

Theorem 2.30. Let I be a radical differential ideal in a differential ternary
semiring S. Then I is the intersection of all prime differential ideals containing
I.

Proof. Let B be the intersection of all prime differential ideals in S each of
which contains I. Clearly I ⊆ B. Let x /∈ I and P = {x2n+1 : n ∈ Z

+
0 }. Then

P is an m-system and P ∩ I = φ.

Then by Theorem 2.29, there exists a maximal differential ideal Q ⊇ I such
that Q does not meet P and Q is prime. Therefore P ∩ Q = φ. Now x ∈ P ,
by construction of P so x /∈ Q. Hence x /∈ B. Hence B ⊆ I. Consequently,
B = I.

Now we obtain below the analogue of Theorem 2.21 in [6] in the setting of
differential ternary semiring.
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Theorem 2.31. In a differential ternary semiring S satisfying ascending
chain condition on radical differential ideals any radical differential ideal is
expressible as the intersection of finite number of prime differential ideals.

Proof. Let S be a differential ternary semiring satisfying ascending chain
condition on radical ideals.

Let X be the set of all radical differential ideals which cannot be expressed
as the intersection of finite number of prime differential ideals.

As S satisfies ascending chain condition on radical differential ideals, X has
a maximal element say I.

Since I is a radical differential ideal and it cannot be expressed as an inter-
section of finite number of prime differential ideals, I is not prime. Therefore
there exist a, b, c ∈ S such that abc ∈ I but a /∈ I, b /∈ I, c /∈ I. Then {I, a},
{I, b}, {I, c} are radical differential ideals in S, each of which properly con-
tains I. Therefore {I, a}, {I, b}, {I, c} are expressible as intersection of finite
number of prime differential ideals. Now {I, a}{I, b}{I, c} ⊆ {I, abc} ⊆ I. Let
d ∈ {I, a} ∩ {I, b} ∩ {I, c}. Then d3 ∈ {I, a}{I, b}{I, c} ⊆ I. Then in view
of Proposition 2.20 and Definition 2.21, d ∈ I. So {I, a} ∩ {I, b} ∩ {I, c} ⊆ I.
Hence I = {I, a} ∩ {I, b} ∩ {I, c}, which is a contradiction. This completes the
proof.

Theorem 2.32. Let S be a differential ternary semiring with a differential
ternary subsemiring A and I be a differential ideal in S such that P = I ∩A is
a prime differential ideal in S. Then I can be enlarged to a prime differential
ideal J in S which also contracts to P i.e. there exists a prime differential ideal
J in S such that I ⊆ J and P = J ∩A.

Proof. Let Q be the complement of P in A. Then Q is an m-system in A.
So Q is an m-system in S and Q ∩ I = φ. Then by Theorem 2.29, there exists
a maximal differential ideal J in S which contains I and does not meet Q and
J is prime. Hence P = I ∩A ⊆ J ∩A. Let x ∈ J ∩A. Then x /∈ Q. So x ∈ P .
Hence J ∩A ⊆ P . Consequently, P = J ∩A.

The following is the analogue of Theorem 2.19 of [6].

Theorem 2.33. Let S be a differential ternary semiring and A be a
differential ternary subsemiring of S. Let I be a radical differential ideal of S
such that abc ∈ I, a ∈ A, b, c ∈ S imply either a ∈ I or b ∈ I or c ∈ I. Then
P = I ∩ A is a prime differential ideal in A. Also I can be expressed as an
intersection of prime differential ideals each of which contracts to P .
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Proof. That P is a prime ideal follows from Theorem 2.19 [6].
Now let a ∈ P . Then I and A both being differential ideals a

′

∈ I and
a
′

∈ A. Hence a
′

∈ P . Consequently P is a differential ideal in A.
The proof of the last part follows in the manner similar to that of Theorem

2.19 [6].

Now combining Theorem 2.32 and first part of Theorem 2.33, we obtain the
following theorem:

Theorem 2.34. Let S be a differential ternary semiring with a differential
ternary subsemiring A and I be a differential ideal in S such that abc ∈ I,
a ∈ A, b, c ∈ S imply either a ∈ I or b ∈ I or c ∈ I. Then P = I ∩A is a prime
differential ideal in A and I can be enlarged to a prime differential ideal in S
which also contracts to P .

Concluding Remark. There are plenty of works on derivations in rings
as well as in semirings. Ternary semiring being a generalization of ring as well
as of semiring,there is further scope of studying derivation in ternary semiring.
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