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PRIME RADICAL AND RADICAL IDEAL

IN TERNARY SEMIRING

Merry Sultana1, Sujit Kumar Sardar3 §, Jayasri Sircar3

1Department of Mathematics
Lady Brabourne College
Kolkata, W.B., INDIA

2Department of Mathematics
Jadavpur University
Kolkata, INDIA

3Department of Mathematics (Advanced Research Centre)
Lady Brabourne College
Kolkata, W.B., INDIA

Abstract: The main purpose of this paper is to obtain some important properties of prime

radical of an ideal in a ternary semiring. Some special properties of prime radical and radical

ideal are also obtained in the case when the ideals are k-ideals and h-ideals.
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1. Introduction and Preliminaries

A non-empty set S together with a binary operation, called addition and a
ternary multiplication, denoted by juxtaposition is said to be a ternary semiring
[1] if (S,+) is a commutative semigroup and the ternary multiplication satisfies
the following: (i) (abc)de = a(bcd)e = ab(cde),

(ii) (a+ b)cd = acd+ bcd,
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(iii) a(b+ c)d = abd+ acd,

(iv) ab(c+ d) = abc+ abd for all a, b, c, d, e ∈ S.

The set Z− of all negative integers and the set Z−
0 of all non positive integers

are two natural examples of ternary semiring with usual addition and ternary
multiplication. M2(Z

−
0 ), the set of all 2 × 2 matrices over Z

−
0 is also a ternary

semiring with canonically defined operations. If there exist an element 0 ∈ S
such that x+ 0 = x and 0xy = x0y = xy0 = 0 for all x, y ∈ S then ‘0’ is called
the zero element or simply the zero [1] of the ternary semiring S and S is called
a ternary semiring with zero. An element e ∈ S is said to be a unital element
[1] if eex = exe = xee for all x ∈ S. The ternary semiring S is said to be
commutative if x1x2x3 = xσ(1)xσ(2)xσ(3) for all x1, x2, x3 ∈ S and σ ∈ S3. Z

−
0 is

a ternary semiring with zero, with a unital element and which is commutative
as well. An additive subsemigroup T of S is called a ternary subsemiring [1] of
S if t1t2t3 ∈ T for all t1, t2, t3 ∈ T . An additive subsemigroup I of S is called
a left or right or a lateral ideal [4] of S if s1s2i ∈ I or is1s2 ∈ I or s1is2 ∈ I
respectively for all s1, s2 ∈ S and for all i ∈ I. If I is a left, a right, a lateral
ideal of S, then I is called an ideal [4] of S. In the ternary semiring M2(Z

−
0 )

the set I =
{

[

a b
c d

]

: a, b, c, d ∈ 2Z−
0

}

is an ideal. An ideal I of the ternary

semiring S is said to be a k-ideal [1] if for a, b ∈ S, a + b ∈ I and a ∈ I then
b ∈ I. An ideal I of the ternary semiring S is said to be an h-ideal [1] if for
x ∈ S and for i1, i2 ∈ I, x+ i1 + s = i2 + s, s ∈ S implies that x ∈ I. A proper
ideal P of S is called a prime ideal [3] of S if for any three ideals A,B,C of S,
ABC ⊆ P implies A ⊆ P or B ⊆ P or C ⊆ P . In the commutative ternary
semiring Z

−
0 of all non positive integers, the ideal I = {3k : k ∈ Z

−
0 } is a prime

ideal. A proper ideal Q of S is called a semiprime ideal [5] of S if I3 ⊆ Q
implies I ⊆ Q for any ideal I of S. In the commutative ternary semiring Z

−
0 of

all non positive integers the ideal Q = {6k : k ∈ Z
−
0 } is a semiprime ideal. It

may be noted that every prime ideal in a ternary semiring is a semiprime ideal
but converse is not true. For example, in the commutative ternary semiring Z

−
0

of all negative integers with zero the semiprime ideal Q = {6k : k ∈ Z
−
0 } is not

a prime ideal. A nonempty subset M of S is called an m-system [3] if for each
a, b, c ∈ M there exist elements x1, x2, x3, x4 of S such that ax1bx2c ∈ M or
ax1x2bx3x4c ∈ M or ax1x2bx3cx4 ∈ M or x1ax2bx3x4c ∈ M.

The notion of ternary semiring was introduced by T. K. Dutta and S. Kar
in [1] in the year 2003, as a natural generalization of ternary ring, introduced
by W. G. Lister [6] in 1971. It is also found to be a generalization of semir-
ing. The notion of prime radical [7] of an ideal is important in the theory of
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rings, as well as of semirings. In this paper we study prime radicals in ternary
semiring as stated in the abstract. Among others we obtain an elementwise
characterization of prime radical of an ideal (cf. Theorem 2.10) and a prime
decomposition of radical ideals (cf. Theorem 2.21).

2. Prime Radical of an Ideal

Definition 2.1. [5] Let S be a ternary semiring and A be an ideal of S.
Then prime radical of A, denoted by β(A), is defined to be the intersection of
all prime ideals of S each of which contains A.

Definition 2.2. An ideal L in a ternary semiring S is said to be a nilpotent
ideal if L2n+1 = 0 for some integer n ≥ 0.

Theorem 2.3. [3] In a ternary semiring S the following conditions are
equivalent:

(i) P is a prime ideal of S

(ii) aSbSc ⊆ P , aSSbSSc ⊆ P , aSSbScS ⊆ P , SaSbSSc ⊆ P implies
a ∈ P or b ∈ P or c ∈ P

(iii) 〈a〉 〈b〉 〈c〉 ⊆ P implies a ∈ P or b ∈ P or c ∈ P.

Corollary 2.4. [3] An ideal I of a commutative ternary semiring S is
prime if and only if abc ∈ P implies that a ∈ P or b ∈ P or c ∈ P for all
elements a, b, c ∈ S.

Now we deduce below some properties of β(A).

Proposition 2.5. For an ideal A of a ternary semiring S we have the
following:

(i) A ⊆ β(A)

(ii) If P is a prime ideal of S then A ⊆ P iff β(A) ⊆ P

(iii) If B is an ideal of S satisfying A ⊆ B then β(A) ⊆ β(B)

(iv) β(A) is a semiprime ideal of S

(v) β(A) = β(A2n+1), n being an integer and n ≥ 0

(vi) β(A) contains every nilpotent ideal of S

(vii) β(β(A)) = β(A).
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Proof. (i), (ii) and (iii) follow immediately from the definition of prime
radical.

(iv) Clearly β(A) is an ideal of S. Let C3 ⊆ β(A), where C is an ideal of S.
Now β(A) =

⋂

{Pi/A ⊆ Pi, Pi is a prime ideal in S}. So C3 ⊆ Pi, for all Pi.
Then Pi, being prime, C ⊆ Pi, for all Pi. Therefore C ⊆ β(A), proving β(A) is
a semiprime ideal of S.

(v) A being an ideal in S, A2n+1 ⊆ A, n being an integer and n ≥ 0. Hence
by (iii), β(A2n+1) ⊆ β(A). Let x ∈ β(A). Now β(A) =

⋂

{Pi/Pi ⊇ A, Pi is a
prime ideal in S}. Then x ∈ Pi for all Pi. If possible let x /∈ β(A2n+1). Then
there exists a prime ideal Q in S such that Q ⊇ A2n+1 and x /∈ Q. Now Q
being prime, A2n+1 ⊆ Q implies that A ⊆ Q whence Q is some Pi. This gives
a contradiction. Therefore x ∈ β(A2n+1). Consequently β(A) = β(A2n+1).

(vi) Let L be a nilpotent ideal in S. Then L2n+1 = {0}, for some integer
n ≥ 0. Hence L2n+1 ⊆ β(A). So L2n+1 ⊆ Pi for all Pi ⊇ A and Pi a prime
ideal. Then L ⊆ Pi, for all Pi. Therefore L ⊆ β(A).

(vii) By (i), A ⊆ β(A). So by (iii), β(A) ⊆ β(β(A)). Let x ∈ β(β(A)) and
{Pi}i∈I be the family of prime ideals in S such that A ⊆ Pi for all i ∈ I. Then
by definition β(A) ⊆ Pi for all i ∈ I whence β(β(A)) ⊆ Pi. Hence x ∈ Pi for all
i ∈ I whence x ∈ β(A). Therefore β(β(A)) = β(A).

We recall below the theorem characterizing the elements of β(A) for its use
in the sequel.

Theorem 2.6. [5] Let A be an ideal in a ternary semiring S. Then β(A) =
{s ∈ S/ every m-system in S which contains s, has a nonempty intersection
with A}.

Proposition 2.7. Let A be an ideal in a ternary semiring S. If a ∈ β(A)
then there exists an integer n ≥ 0 such that a2n+1 ∈ A.

Proof. Let a ∈ β(A). Then by Theorem 2.6, every m-system in S containing
a has a nonempty intersection with A. We consider M = {a2n+1: n being an
integer and n ≥ 0}. ThenM is an m-system containing a. ThereforeM∩A 6= φ.
Then there exists an integer n ≥ 0 such that a2n+1 ∈ A.

Proposition 2.8. Suppose S is a commutative ternary semiring and M
is an m-system in S containing a. Then there exists an integer n ≥ 0 such that
a2n+1xy ∈ M where x, y ∈ S.
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Proof. We use below repeatedly the definition of m-system and commuta-
tivity of S.

Since a ∈ M , there exist x1, x2, x3, x4 in S such that ax1ax2a ∈ M or
ax1x2ax3x4a ∈ M or ax1x2ax3ax4 ∈ M or x1ax2ax3x4a ∈ M . It follows that
a(x1ax2)a ∈ M or S being commutative, a3x1x2 ∈ M or a3x1x2x3x4 ∈ M .

Let a3x1x2 ∈ M . Then there exist x5, x6, x7, x8 ∈ S such that a5x1x2
x5x6 ∈ M or a5x1x2x5x6x7x8 ∈ M .

Let a3x1x2x3x4 ∈ M . Then there exist y1, y2, y3, y4 ∈ S such that a5x1x2x3
x4y1y2 ∈ M or a5x1x2x3x4y1y2y3y4 ∈ M .

Continuing in this way we get for each integer n ≥ 0, a2n+1xy ∈ M for
some x, y ∈ S.

Proposition 2.9. Let A be an ideal in a commutative ternary semiring S
such that a2n+1 ∈ A, where a ∈ S, n is an integer and n ≥ 0. Then a ∈ β(A).

Proof. Let M be any m-system in S containing a. Then by Proposition 2.8,
a2n+1xy ∈ M , for some x, y ∈ S.

As A is an ideal and a2n+1 ∈ A, a2n+1xy ∈ A. So M ∩A 6= φ.

Therefore by Theorem 2.6, a ∈ β(A).

Combination of Proposition 2.7 and 2.9 gives rise to the following result.

Theorem 2.10. Suppose S is a commutative ternary semiring and A is
an ideal of S. Then β(A) = {a ∈ S/a2n+1 ∈ A for some positive integer n ≥ 0}.

Definition 2.11. An ideal A in a ternary semiring S is called a prime
radical ideal if β(A) = A.

We simply say a prime radical ideal to be a radical ideal.

Proposition 2.12. If A is an ideal in a ternary semiring S then the
following are equivalent:

(i) β(A) = A,

(ii) a2n+1 ∈ A implies a ∈ A, where n is an integer and n ≥ 0.

Proof. (i) ⇒ (ii). Let a2n+1 ∈ A then by Proposition 2.9, a ∈ β(A) = A,
proving (ii).

(ii) ⇒ (i). We know that A ⊆ β(A). Let t ∈ β(A). Then by Proposition
2.7 there exists an integer n ≥ 0 such that t2n+1 ∈ A. Hence by hypothesis
t ∈ A. Hence β(A) ⊆ A, proving β(A) = A.
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Definition 2.13. A k-ideal (h-ideal) in a ternary semiring S which also
is a radical ideal is called a radical k-ideal (h-ideal).

Theorem 2.14. Let I be a radical k-ideal of a commutative ternary
semiring S and U , V be any two subsets of S. Then

T = {x ∈ S : xUV ⊆ I}

is a radical k-ideal.

Proof. T is clearly an ideal of S. Now let (x + y) ∈ T and x ∈ T , y ∈ S.
Then (x+ y)uv ∈ I and xuv ∈ I for all u ∈ U , and for all v ∈ V .

So yuv ∈ I for all u ∈ U , and for all v ∈ V as I is a k-ideal in S.

Hence y ∈ T . Consequently, T is a k-ideal in S.

Let x2n+1 ∈ T , for some integer n ≥ 0. Then x2n+1uv ∈ I for all u ∈ U, v ∈
V , which implies x2n+1u2n+1v2n+1 ∈ I for all u ∈ U and for all v ∈ V , as I is
an ideal of S.

Therefore (xuv)2n+1 ∈ I for all u ∈ U and for all v ∈ V .

So xuv ∈ I for all u ∈ U and for all v ∈ V , as I is a radical ideal. Thus
xUV ⊆ I and so x ∈ T .

Hence by Proposition 2.12, T is also a radical ideal and the theorem is
proved.

Theorem 2.15. Let I be a radical h-ideal of a commutative ternary
semiring S and U , V are any two subsets of S. Then

T = {x ∈ S : xUV ⊆ I}

is a radical h-ideal.

Proof. Clearly T is an ideal of S. Now let x ∈ S and x+ i1 + s = i2 + s for
s ∈ S and for i1, i2 ∈ T .

Then (x+ i1 + s)uv = (i2 + s)uv for all u ∈ U and for all v ∈ V .

Therefore xuv + i1uv + suv = i2uv + suv where suv ∈ S and i1uv ∈ I,
i2uv ∈ I. So xuv ∈ I for all u ∈ U and for all v ∈ V as I is an h-ideal in S.

Hence x ∈ T . Consequently T is an h-ideal.

The proof of the part that T is a radical ideal is similar to that in Theorem
2.14

Theorem 2.16. In a ternary semiring intersection of any collection of
radical ideals is again a radical ideal.
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Proof. Let S be a ternary semiring and {Ti : i ∈ Λ} be any collection of
radical ideals in S. Then by definition 2.11, β(Ti) = Ti, for all i ∈ Λ. Now
⋂

i∈Λ
Ti ⊆ Ti for all i ∈ Λ. So by Proposition 2.5(iii), β(

⋂

Ti

i∈Λ
) ⊆ Ti, for all i ∈ Λ.

Therefore β(
⋂

i∈Λ
Ti) ⊆

⋂

i∈Λ
Ti. Again

⋂

i∈Λ
Ti ⊆ β(

⋂

i∈Λ
Ti) (cf. Proposition 2.5(i)).

Therefore β(
⋂

i∈Λ
Ti) =

⋂

i∈Λ
Ti, proving

⋂

i∈Λ
Ti is a radical ideal.

Definition 2.17. Suppose S is a ternary semiring with a subsemiring A
and for an ideal I, P = I ∩ A is an ideal. If there is another ideal J in S such
that J ⊇ I and P = J ∩A then we say I can be enlarged to an ideal in S which
also contracts to P.

Theorem 2.18. [3] Let A be an m-system and N be an ideal of a ternary
semiring S such that N ∩ A = φ. Then there exists a maximal ideal M of S
containing N such that M ∩A = φ. Moreover, M is a prime ideal of S.

Theorem 2.19. Let S be a commutative ternary semiring and A be a
ternary subsemiring of S. Let I be a radical ideal of S such that abc ∈ I, a ∈ A,
b, c ∈ S imply either a ∈ I or b ∈ I or c ∈ I. Then P = I ∩ A is a prime ideal
in A. Also I can be expressed as an intersection of prime ideals each of which
contracts to P.

Proof. Let a, b, c ∈ A such that abc ∈ P . Then abc ∈ I. Therefore by
hypothesis either a ∈ I or b ∈ I or c ∈ I. Hence either a ∈ P or b ∈ P or c ∈ P .
So P becomes a prime ideal (cf. Corollary 2.4).

Let X =
⋂

{J/J is a prime ideal of S with J ⊇ I and J ∩ A = P}.
Then I ⊆ X. To prove the reverse inclusion, let x /∈ I. Then the m-system
M = {x} ∪ {dx2n : d ∈ A but d /∈ P and n is a positive integer } has empty
intersection with I. Then by Theorem 2.18 there exists a maximal ideal Q ⊇ I
with Q ∩M = φ, which is also prime.

Then P ⊆ Q ∩ A. Again for q ∈ Q ∩ A, qx2 ∈ Q, Q being an ideal of S.
It follows that qx2 /∈ M . This together with definition of M and that q ∈ A
implies that q ∈ P . Therefore Q ∩ A ⊆ P . Hence P = Q ∩ A. Again x /∈ Q
as x ∈ M and M ∩ Q = φ. Therefore x /∈ X and so X ⊆ I. Consequently
I = X.

Definition 2.20. Let S be a ternary semiring and A be any subset of S.
The radical ideal generated by A is denoted by {A} and is defined to be the
intersection of all radical ideals of S each of which contains A.

Clearly {A} is the smallest radical ideal containing A.
For simplicity we write {A ∪ {a}} as {A, a}.
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Theorem 2.21. In a commutative ternary semiring S satisfying ascending
chain condition on radical ideals any radical ideal is expressible as the intersec-
tion of finite number of prime ideals.

Proof. Let S be a commutative ternary semiring satisfying ascending chain
condition on radical ideals. Let X be the set of all radical ideals which cannot
be expressed as the intersection of finite number of prime ideals and X 6= φ.
As S satisfies ascending chain condition on radical ideals, X has a maximal
element say I. Since I ∈ X and it cannot be expressed as intersection of finite
number of prime ideals, I is not prime.

Therefore there exist a, b, c ∈ S such that abc ∈ I but a /∈ I, b /∈ I, c /∈ I.

Then each of the radical ideals {I, a}, {I, b}, {I, c} properly contains I.

Hence each of them is expressible as intersection of finite number of prime
ideals in S.

Now {I, a}{I, b}{I, c} ⊆ {I, abc} ⊆ I. So for any d ∈ {I, a}∩{I, b}∩{I, c},
d3 ∈ I whence d ∈ I as I is a radical ideal. So {I, a} ∩ {I, b} ∩ {I, c} ⊆ I.

Clearly I ⊆ {I, a} ∩ {I, b} ∩ {I, c}. So I = {I, a} ∩ {I, b} ∩ {I, c}. There-
fore I can be expressed as an intersection of finite number of prime ideals, a
contradiction. So X = φ.

This completes the proof.

3. Concluding Remark

In order to study derivations in ternary semirings, in our next paper many of
the results of this paper have been extensively used.
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