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Abstract: The main object of the present paper is to obtain new estimates involv-
ing the (p, g)-th order and the (p, g)-th type of entire functions under some suitable
conditions. Some open questions, which emerge naturally from this investigation,
are also indicated as a further scope of study for the interested future researchers in
this branch of Complex Analysis.
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1. Introduction

A single-valued function of one complex variable, which is analytic in the finite complex plane, is
called an entire (integral) function. For example, exp(z), sin z, cos z, and so on, are all entire func-
tions. In the value distribution theory, one studies how an entire function assumes some values and
the influence of assuming certain values in some specific manner on a function. In 1926, Rolf
Nevanlinna initiated the value distribution theory of entire functions. This value distribution theory is
a prominent branch of Complex Analysis and is the prime concern of this paper. Perhaps the
Fundamental Theorem of Classical Algebra, which may be stated as follows:

If P(z) is a non-constant polynomial in z with real or complex coefficients, then the equation

P(z) = 0 has at least one root
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is the most well-known value distribution theorem. The value distribution theory deals with the
various aspects of the behaviour of entire functions, one of which is the study of comparative growth
properties of entire functions. For any entire function f(z) given by

f(2)= Eanz”, (1.1)
n=0

we define the maximum modulus Mf(r) of f(z) on|z| = r as a function of r by
M.(r) = max{|f(2)]}. (1.2)
|z|=r

In this connection, for all sufficiently large values of r, we recall the following well-known inequalities
relating the maximum moduli of any two entire functions f,.(z) and E(z):

Mfiiﬁ(r) < Mfi(r) + ij(r), (1.3)
Mf,»iﬂ(r) ngl(r)_M,;(r) (1.4)
and

Mpo (1) S M(r) - Me(r). (15)

On the other hand, if we consider z, to be a point on the circle|z| = r, we find for all sufficiently large
values of r that

My =mex{ [f@ - f@[} = max{If@ - [f@]}, 6)
which implies that

M 0 2 [f@) - [f@) 1.7)

In terms of the maximum modulus Mf(r) of the function f(z), the order Py of the entire function f(2),
which is generally useful for computational purposes, is defined by

log log M(r)
= i B r— < < 18
2 “rliuP{ log7 } (0 Sp S oo). (1.8)

Moreover, with a view to determining (e.g.) the relative growth of two entire functions with the same
positive order, the type of of the entire function f (2) of order pr<0 <p< oo) is defined by

) log Mf(r)
Gf:=l'n;‘_iUP{T} <0§"f = °°)- (1.9)

The determination of the order of growth and the type of entire functions is rather important in order
to study the basic properties of the value distribution theory. In this regard, several researchers
made extensive investigations on this subject and presented the following useful results.

THEOREM 1 (see Holland, 1973) Let f(z) and g(z) be any two entire functions of orders Py and Py
respectively. Then

Prg = Pg When pe <p,

and
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< <
Prg S pg When p. < p.

THEOREM 2 (see Levin, 1996) Let f(z) and [ be any two entire functions with orders ps and Py
respectively. Then

Prrg S TAX {pf,pg},
Prgq S MAX {pf,pg},

Ofrg < max {Gf,ag}

and
<
Opg S 0p 0,

By appropriately extending the notion of addition and multiplication theorems as introduced by
Holland (1973) and Levin (1996), our main object in this paper is to give the corresponding exten-
sions of Theorem A and Theorem B. In our present investigation, we make use of index-pairs and the
concept of the (p, g)-th order of entire functions for any two positive integers p and g with p 2 q,
which are introduced in Section 2. For the the standard definitions, notations and conventions used
in the theory of entire functions, the reader may refer to (e.g. Boas, 1957; Valiron, 1949). Several
closely-related recent works on the subject of our present investigation include (e.g. Choi, Datta,
Biswas, & Sen, 2015; Datta, Biswas, & Biswas, 2013, 2015; Datta, Biswas, & Sen, 2015).

2. Definitions, notations, and preliminaries

Let f (Z) be an entire function defined in the complex z-plane C. Also let Mf(r) denote the maximum
modulus of f(2) for|z| =r (0 < r < oo0) as defined by (1.2). In our investigation, we use the follow-
ing definitions, notations, and conventions:

log” x = x and log" x = log <log”‘"”x) keN:=1{1,2,3,..})
and

exp?(x) = x and exp™(x) = exp (eXP[k_l](X)) (ke N).

Sato (1963) introduced a more general concept of the order and the type of an entire function than
those given by (1.8) and (1.9).

Definition 1 (see Sato, 1963) Let l € N\ {1}. The generalized order p)[’] of an entire function f(2) is
defined by

log" M.(r)
m_ f . il
Pt _llrp_iup{ logr (lEN\{l},0<pf <oo>. (2.1)

Definition 2 (see Sato, 1963) Let! € N'\ {1}. The generalized type a’[” of an entire function f(z) of the
generalized order pI[,“ is defined by

10
f !

log" ' M.(r)
am=limsup{g—f} (lGN\{l};0<0';’]<oo). (2.2)
r—oco
Remark 1 When | = 2, Definitions 1 and 2 coincide with the Equations (1.8) and (1.9), respectively.
More recently, a further generalized concept of the (p, q)-th order and the (p, g)-th type of an
entire function f(z) was introduced by Juneja et al. (see Juneja, Kapoor, & Bajpai, 1976, 1977) as
follows.
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Definition 3 (see Juneja etal., 1976) Let p,q € N (p = q). The (p, q)-th order PP @) of an entire func-
tion f(z) is defined by

log® M(r)

log[ql r

p¢(p, @) = lim SUP{ } (0 < pe(p, Q) < oo). (2.3)

Definition 4 (see Juneja et al., 1977) Let p,q € N (p 2 g). The (p, g)-th type o;(p, ) of an entire func-
tion f(z) of the (p, q)-th order ¢ (ps q)(b < 2(Ne); < oo) is defined by

_ log®~Y M(r)
o¢(p,q) = limsup —%n (0< or(p,q) < ©), (2.4)
== | (1ogr)"® |
where the parameter b is given by
po) 1 P=0 (2.5)
0 (p<q.

Remark 2 By comparing Definitions 3 and 4 with Definitions 1 and 2, respectively, it is easily
observed that

pf(l, 1= p},” and Gf(l, = O-f['“’ (2.6)
See also Remark 1 above.
Next, in connection with the above developments, we also recall the following definition.

Definition 5 (see Juneja et al., 1976) An entire function f(z) is said to have the index-pair (p,q)
pzqzDif

b<pip,q) <
and pe(p— 1,9 — 1) is not a nonzero finite number, where b is given by (2.5). Moreover, if
0< Pf(P, g) < oo,

then

pep—n,@ =00 (n<p), p(p,q-N=0 (n<q)

and

pf(p+n,q+n) =1 (neN).

The following proposition will be needed in our investigation.

Proposition 1 Let f,(z) and f(z) be any two entire functions with the index-pairs (p»q;) and (pj,qJ.),
respectively. Then the following conditions may occur:

() p; 2 p;, g, =q;and p, (P a;) > Py (pj’qj>;
(i) p; 2 pp q; < gyand p (p;, q;) = oy (p,-, 9; >;
(iii) P; > Pj G; = q; and Py (pi’qi) = pf} (pj’qj);
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(iv) p; 2 P G; <G and Py, (P,w q,') > Pt (Pj,qj);

) p; = Pp 9; =q; and Py, (P,-, qi) =7 (Pj, q]');

i) p;=p;, 4> g;and ¢ (P, q;) > oy (p,,q,)

(vii) p; > p;, g; < g;and pr (Pna;) < Py (pj,qj),

(viii) p; > p;, q;=¢q;and Pt (Phq;) < Pt (pj,qj>

() p; <p; q; < g;and p¢ (P, q;) > oy (pj,q,-);

(x) p; > Pp 9; > q; and Py (P,’:qi) Z PG (Pjy qj')'

The following definition will also be useful in our investigation.
Definition 6 (see Bernal-Gonzdlez, 1988) A non-constant entire function f(z) is said to have the
Property (A) if, for any ¢ > 1 and for all sufficiently large values of r, the following inequality holds
true:

2 (o

[Mf(r)] <M (r°).

Remark 3 For examples of entire functions with or without the Property (A), one may see the earlier
work (Bernal-Gonzdlez, 1988).

3. A set of Lemmas
Here, in this section, we present three lemmas which will be needed in the sequel.

LEMMA 1 (see Bernal-Gonzdlez, 1988) Suppose that f(z) is an entire function,a > 1, 0 < f <a, s> 1
and 0 < u < A Then

(@) M¢(ar) > pM;(r)
and

M. (r M, (r
(b) lim{ f(r)}=oo=lim{£}.
r—co Mf(r) r—oo Mf(ru)

LEMMA 2 (see Bernal-Gonzdlez, 1988) Let f(z) be an entire function which satisfies the Property (A).
Then, for any integer n € N and for all sufficiently large values of r,

n
[Mf(r)] <M (r) <.
LEMMA 3 (see Levin, 1980, p. 21) Let the function f(z) be holomorphic in the circle |z| = 2eR (R > 0)
with f(0) = 1. Also let n be an arbitrary positive number not exceeding 3€ Then, inside the circle|z| = R,
but outside of a family of excluded circles, the sum of whose radii is not greater than 4#R,

log |f(2)| > ~T(n) logM, (2eR),

where
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T(n) =2+ log <;—;>

4. Main results
In this section, we state and prove the main results of this paper.

THEOREM 3 Let f,(z) and f(z) be any two entire functions with index-pairs (p;,q;) and (pj, qj> respec-
tively, where p;,p;, q;,q; € N are constrained by

p;2q;, and p;2gq;.
Then

P(15) (P2 @) S MaX {pf, (P ;). o (p,-, qj) } (4.1)
where
p = max {pi,pj} and g = min {qi,qj}.

Equality in (4.1) holds true when any one of the first four conditions of the Proposition in Section 2 are
satisfied fori # j.

Proof For

p(,fii,;)(P’ 9 =0,

the result (4.1) is obvious, so we suppose that

P(af) P D > 0.

Clearly, we can also assume that Pt (P Gy ) is finite fork = i, j.

Now, for any arbitrary e > 0, from Definition 3 for the (p,, g, )-th order, we find for all sufficiently large
values of r that

M, ) 5 explPd (o (Pg) +e)togh®l | k=i, j) (4.2)
that is,

Mfk(r) é exp[max {plvpz }]

[(mox { oy (). oy (P )} +) togt™ (M| =i, (4.3)
so that
M, (1) < expl?! [ (max{ o (P a,), 0y (P ) } +) togl®l | k=i . 64)
Therefore, in view of (4.4), we deduce from (1.3) for all sufficiently large values of r that
My.; () < 2expl?! [(max {5, (p, ), 9, (P ;) } + ) logi*)r]. (4.5)

Thus, by applying Lemma 1(a), we find from (4.5) for all sufficiently large values of r that
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%Mﬂifj(r) < explF] [(max {pﬁ_ (P G;), P (pj, qj) } + .9) log[q] r],
that is,

Mf,»_rfj (%) < expl?] [(max {pﬁ_ (pi,qi),pﬂ_ <pj,qj>} + g> |Og[Q] r],
that is,

log”! M, . <§>

|og[a] (§> +0(1) < max {pf,- (p;,q,),pﬂ_ (Pj,qj>} +&.

Therefore, we have
. log[P] Mf,ifj (g )

pﬁig(P, q) = limsup T ) L s

r~= | log! <§> +0(1)

< max {Pﬁ (Pp Q,-), PG (Pp qj) } +e.

Since e > O'is arbitrary, it follows that
Pﬁir}(pr 9 < max {pﬁ_ (P,—: CI,-), I’f} <pjr qj) } (4.6)
We now let any one of first four conditions of the Proposition in Section 2 be satisfied fori # j (i,j = 1, 2).

Then, since & > Ois arbitrary, from Definition 3 for the (p,, g, }-th order, we find for a sequence of values of
r tending to infinity that

M, 02 expl™) [ (s (pog) =€) tog!®l | (k= i) @7

Therefore, in view of the first four conditions of the Proposition in Section 2, we obtain for a sequence
of values of r tending to infinity that

M, (1) 2 expl?! [(max {pﬁ (P :). py (Pj» qj> } - e) logl r]. (4.8)
We next consider the following expression:

expl") [ (s (p ;) +) logl?! ]
expl?] [(pfj (prq)) +¢) togl ,]

By virtue of the first four conditions of the Proposition of Section 2 and Lemma 1(b), we find from
(4.9) that

(i #J). (4.9)

- expl?] [(p;(p,q) + £ ) logl*! ]

| expl?] [(l’l}(pf’qi) e logl® r]

=o0 (i #)). (4.10)

Now, clearly, (4.10) can also be written as follows:
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- exp[p] [(qu {pﬁ_ (pi,qi),pﬂ_ (pj,qj>} - s) log[q] r] o (4.11)

o expl?] [<”0 (pra) +¢)t0gl" r]

where

pz Py, q < q; and max {Pﬁ (P,-, q,‘):/’ﬂ_ (Pj, Qj>} 2 PG (Pj: Qj>,

but all of the equalities do not hold true simultaneously. So, from (4.11), we find for all sufficiently
large values of r that

expl)[(max {1, (0,). 7 (,9,)} ~ ) o]
>2 exp[pf] [(pf_ (pj,qj> + e) 109[%-] r]. (4.12)
)
Thus, from (4.2), (4.8) and (4.12), we deduce for a sequence of values of r tending to infinity that
M (r) > 2 eXP[pf] [(pfj (pj:qj> + e) log[qf] r],
that is,

va(r) < 2Mf_(r) (i#j;i,j=1,2). (4.13)

Therefore, from (4.8) and (4.13), and in view of Lemma 1(a) and (1.4), it follows for a sequence of
values of r tending to infinity that

Mfiifj(f) Z M () - ij(r) (i #),
that is,
M > M 1M .

fi‘—rfj(r) = ﬁ(r) - E f'(l’) a #J);
that is,
M (02 SM() (%))

fif, =5 )
that is,

1

Mf,ifj(r) > 5 expl?! [(max {pﬂ (P ;) P (pj, qj) } - e) log[q] r],
so that
My (3r) 2 expl’] | (max { ; (P, q). 1y () | — ¢) log!l ],
which, for a sequence of values of r tending to infinity, yields

log[P] M ” (3!’)
oo on vom, 2 (Mo ea oy (pra)} + )

that is,
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. log[p] Mf,vif- (3r)
limsup -

nst m gmox{pfi(Pir%)r!’fj@j’qJ‘)}’

so that

_ log!”] M; . (1)
g (@) = limsupd —— 1
f E [ log[q] r (4 14)
2 max {Pﬁ (Pp Q,-), l’ﬁ, (Pp qj) }

Clearly, therefore, the conclusion of the second part of Theorem 1 follows from (4.6) and (4.14). ]

Remark 4 That the inequality sign in Theorem 1 cannot be removed is evident from Example 1
below.

Example 1 Given any two natural numbers [ and m, the functions
f@ =exp" (z") and g(z) = —exp" (z")

have their maximum moduli given by

Mc(r) = exp (r™) and M,(r) = exp! (r™),

respectively. Therefore, the following expressions:

log“I M.(r) log“'M_(r)
9 " and 9
logr logr

are both constants for each k € N\ {1}. Thus, obviously, it follows that

P+1] _ ng] —m,

but

S _ [ 2zk=z)h
f g 0 (k>Il+1).

Consequently, we have
p[l+1] —0< pl[l+1] X pg[;l+1] —om.

f+g

THEOREM 4  Let f,(z) and f(z) be any two entire functions with index-pairs (p;,q;) and (pj, qj) respec-
tively, where p;,p;, q;,q; € N are constrained by

p;2q; and p;2gq;.

Suppose also that pr (p»q;)and pr (pj, qj) are both non-zero and finite. Then, for
i j

p = max {pi,pj} and g = min {q,-,qj},

o4 P D = 07 (P G;), (4.15)
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provided that any one of the first four conditions of the Proposition of Section 2 is satisfied fori # j.

Proof First of all, suppose that any one of the first four conditions of the Proposition of Section 2 is
satisfied for i # j. Also let e > 0 and &, > 0 be chosen arbitrarily. Then, from Definition 4 for the (p,, ;)
-type, we find for all sufficiently large values of r that

[pe-1] [ [a-1] 71, (P9 | e
My (1) 2 exp P (o7 (P @) + ) (loglr) | k=h)- (4.16)
Moreover, for a sequence of values of r tending to infinity, we obtain
l _ ACERY .
M, (r) 2 explP] (o, (Po2) — &) (loglal r ) k=1, J). (4.17)

Therefore, from (1.3) and (4.16), we get for all sufficiently large values of r that

_ - (P1a) |
My () < expl?] [(Gf, (1) +¢) (10l )"

. a1 - pfj (pjtqj)
eXP[pr ] [(”}; (Pj:qj) +e) <log[ 1] r> :| (4.18)

x|1+ (i # J).

exp[p,*l] [(Gf, (pir q,) + 8) (log[q:—l] r)ﬂf: (p;,q;)]

Now, in light of any one of the first four conditions of the Proposition in Section 2, for all sufficiently
large values of r, we can make the factor:

exp[p,-—l] l(gfj (pj,qj) +e) (log[qi‘l] r>pf; (pquj)]

1+
exp[P;‘—l] I:(o-f, (p[, ql) + 5) <log[ql'*1] r>”ﬁ(P1:Qi):|

i #),

which occurs on the right-hand side of (4.18), as small as possible. Hence, for any a > 1 + ¢, it fol-
lows from Lemma 1 (a) and (4.18) that

(1 +g,),

B - (Pina;)
My.g 0 S el | (o (p, ) + ) (loglt~11 )|

that is,

1 _ 1 AGED]
(135 M0 5090 i) ) o921,
so that

(4.19)

_ - (P:4;)
My () < explP] [0‘(6& (Pa;) +¢)(logl* ’>pﬁ ]

for all sufficiently large values of r. Thus, by using (4.19), we find for all sufficiently large values of r
that

5 max { 7, (P1,91)0y, (P29,)
Mf,:fj(r) < exp[P—l] [a(gfi (P, q;) +€) (log[q 1] r) {o f }] . (4.20)

Therefore, in view of Theorem 1, it follows from (4.20) that, for all sufficiently large values of r,

log!*] e (1) < a(o (P q;) +€) (log[q’l] r )max{pf] s (pz‘qZ)},
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that is,

log[P! My (D < a(o (P a) +6)(log[qf1] r)mux{”fl("vql)“’rz("qu)}

[logle1,| )™ = logle 1] mox {1, ()0, (b2} (4.21)

Hence, upon letting a — 1+ in (4.21), we find for all sufficiently large values of r that

log"IMm, . (r)
lim sup —

— < Q.
== | (logr) )™ =i (Prdi)

that is,

a“’"”(f,» + f,) < oPa(f). (4.22)

Again, from (1.4), (4.16) and (4.17), we see for a sequence of values of r tending to infinity that

- . — p’_(pA,q,)
My () 2 explP~] [(af,(p,-,qi) — &) (loglrr)" ]

exp[”f‘l] [(Uﬂ- (Py qi) +e) <l°g[qj_l] r> ! (pj’qj)} (4.23)

x [1- (i #-

exp[p,—l] [(O'f (pi: q,) - 5) (log[qf—l] r)ﬂfi (p;,qf)]

Now, by virtue of any one of the first four conditions of the Proposition in Section 2, for all sufficiently
large values of r, we can make the factor:

explr”! l("f, (Pra) +¢) (109["1‘1] r>pfj (pj,qj)]
ﬂf,(qu,»)]

1- (i #j)

exp[Pi_l] [(Uf, (pi’qi) — 6) ([Og[qi_l] r)

which occurs on the right-hand side of (4.23), as small as possible. Hence, for any g constrained by

1

1—61,

p>

it follows from Lemma 1(a) and (4.23) that, for a sequence of values of r tending to infinity,

M (N2 explpi1l [(o'f] (pia;) —€) (log[qf‘l] r)p"'(p"q')] (1-¢,).

that is,

(225 a0 (00 ) g1

so that

My (A1) = explor] [(Gn (p,a;) —¢)(logl*~™ r)”ff(”"""')]. (4.24)

Therefore, by using (4.24), it follows for a sequence of values of r tending to infinity that
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— - max { op, (P1,d1 )rp, (P2:42)
Mf,»:rfj(ﬁr) > exp[P 1] [(Gﬁ (P ;) —€) (log[q 1] r) {o o, }]’

which, in the limit when g — 1+ yields

log[P—l] Mfrifj (r)

lim sup 2o, (P;q;)-
- (lOg[q—l] r)m‘“{"ft (Pras) 7 (o)} f (4.25)

Thus, in view of Theorem 1, we find from (4.25) that

[og[P—l] Mf,ifJ (@)

lim sup 2 0:(Py3;)
r—oo (log[q_l] r)f’(flifz)(P,Q> f,( )
that is,
qu)(fi + E) > &5Poa) (f‘) (4.26)
Theorem 2 now follows from (4.22) and (4.26). O

Our next result (Theorem 3) provides the condition under which the equality sign in the assertion
(4.1) of Theorem 1 holds true in the case of the condition (v) of the Proposition of Section 2.

THEOREM 5  Let f,(2) and f,(2) be any two entire functions such that

2P =P @ (0< 7, (P, = (P G) < )

and

o;. (P, Q) # o (P, Q).

Then

Prar, (P =, (P, @) = p; (P, D) (P,GEN; P2 Q). (4.27)

Proof Under the hypotheses of Theorem 3, if we apply Theorem 1, it is easily seen that

Pr +f, P9 = Py, P9 = Py, ® 9.

Let us consider the case when

Pr +f, P9 < Py, P9 = Py, P 9.

Then, in view of Theorem 2, we find that
St P9 = Of, +f,%f, P9 = o, P D,
which is a contradiction. Consequently, the assertion (4.27) of Theorem 3 holds true. O

THEOREM 6 Let f,(z) and ];(z) be any two entire functions with the index-pairs (p,.,q,.) and (pj,qj)
respectively, for p,, p;, q;,q; € Nsuch that

p;2q; and p;zgq;.
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Then

Pfi.,;_(pr Q) = max {Pﬂ_ (pir qi): l’fj (Pj: qj‘) }r (4.28)
where
p = max {pi,pj} and g =min {q,,qj}.

Equality in (4.28) holds true when any one of the first four conditions of the Proposition of Section 2 is
satisfied for i # j. Furthermore, a similar relation holds true for the quotient

f(2): = (@
@

provided that the function {(z) is entire.

Proof Since the result is obvious when

p(fi.,;)(P, 9 =0,

we suppose that P(ﬁ_fj)(P’ 9 > 0, Suppose also that

max {pf, (P ), o (p,-,qj) } =p.

We can clearly assume that p (P Gy ) is finite for k = i, j.

Now, for any arbitrary € > 0, we find from () that, for all sufficiently large values of r,

M, (r) < expl?] [(p + %) log!“] f] k=1i,)). (4.29)

We further consider the expression:

explP1l [(p +¢)logld] r]

explP-1] [(p + §> logl¥ r]

for all sufficiently large values of r. Thus, for any § > 1, it follows from the above expression that, for
all sufficiently large values ofr 2 r, 2 r,

explP~1] [(p +¢)logl! ro]
explP-1] [<p+ §) log!! ,0] =0 (4.30)

Next, in view of (4.29) and (1.5), we have

Mﬁ-fj(r) < [exp[p] [<p+ %) logl?! r”2 (4.31)

for all sufficiently large values of r. Also, by applying Lemma 2, we find from (4.30) and (4.31) that,
for all sufficiently large values of r,

My () < expl’] [(,, + §> log! ,]{
that is,

M“j(r) < explf] [(p +¢) log[q] r].
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Therefore, we have

log!P] M ()
ilj

——— =(p+e),

logl?! r
so that

lOg[p] Mf,.f,(r)
P (P, @) = limsup————— < (p +¢).
i r—oo log[q] r

Since e > O'is arbitrary, it is easily observed that

Pﬂ.fl_(P, q) < p=max {Pfi (p," q,‘)’ Pfj (Pj, qj) } (4.32)

We now let any one of the first four conditions of the Proposition of Section 2 be satisfied for i # j.
Then, without any loss of generality, we may assume that

f(0)=1 k=i, j).

We may also suppose thatr > R. Thus, from (4.7) and in view of the first four conditions of the Propo-
sition of Section 2, we find for a sequence of values of R tending to infinity that

Mf,(R) ; exp[P] [(p —€) lOg[q] R]‘ (4.33)

Also, by using (4.4), we get for all sufficiently large values of r that

M (r) < expl?! [(p +¢)logl¥ r]. (4.34)
]

In view of Lemma 3, if we take f].(z) forf(2),n = % and 2R for R, it follows that

log |fj(z)( > T(n)logM, (2 2R),

where

Tn)=2+log <3_el> =2 +log (24e).
2- I

Therefore, the following inequality:

log [f2)| > ~(2 +1og (24€)) log M, (4e - R)

holds true within and on the circle |z| = 2R, but outside of a family of excluded circles, the sum of
whose radii is not greater than

1 R
4. T 2R = 5
Ifr € (R, 2R), then, on the circle |z| = r, we have

log |[}(z)‘ > —7log ij(lre -R). (4.35)

Sincer > R, we see from (4.33) that, for a sequence of values of r tending to infinity,
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M. (r)> M, R) > expl?] [(p —&)logl¥ R]
> expl] [(,, —#)logl¥ ( % )] (4.36)

We now let z, be a point on the circle|z| = r such that

M0 =|fi(z,)

Then, since r > R, it follows from (1.5), (4.34), (4.35) and (4.36) that, for a sequence of values of r
tending to infinity,

M0 2 [f(z)

that is,
-7
My () 2 M 4eR)| M (), (4.37)
that is,
-7
Mmj(r) > (exp[P] [(p +¢)logl (4eR)]) -expl?] [(p —&)logl¥] (%)],
that is,

-7
Mﬁ-fj(r) > (exp[”] [(p +e)logld (4er)]> - expl?] [(p —&)logl] (%)] (4.38)

Since

explP1] [(p —e)logl (% )]

explP1l [(p +¢)logl®] (4er)]

lim

r-oco

= 00,

we may observe, for all sufficiently large values of r withr, > r, > r,, that

log [(p —&)logl¥] (%)] log [(ﬂ ~&)logl” (%)]
< -

log [(p +¢)logl¥ (4ern)] log [(p +¢)logl¥] (4er0)]

Therefore, clearly, we have

5> 1.

Hence, for the above value of 5, we can easily verify that

S
expl”] [(p —f) log["] (%)] > expl?] [((p +¢) log[q] (4er)) ] (4.39)

Also, in light of Lemma 2, we find for all sufficiently large values of r that

expl?] [((p +¢)logl?! (4er>)6 2 (expl?! [+ £)logl! (4en)| )8. (4.40)

Now, from (4.38), (4.39) and (4.40), it follows for a sequence of values of r tending to infinity that

My, 02 expl?l (o + &) log!® (sen)],
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that is,
log”I M, ;1)
oaflrom 20t
logt" r + O(1)
so that

logt?! M, . ()
Pr. f(P,Q) = limsup #’J

roe log*'r (4.41)

<p= Gx{pf (P ;) o (P,ﬂ,)}

Consequently, the second part of Theorem 4 follows from (4.32) and (4.41).

We may next suppose that

fo=12 s
W=rg 7

We also assume that any one of the conditions as laid down in the Proposition of Section 2 are satis-
fied for i # j. Therefore, we can write

(@ =@ f@.

If possible, let any one of the first four conditions of the Proposition of Section 2 is satisfied after
replacing all i by k and all j by i in the first four conditions of the Proposition. We then find that

Pfj (Pj, qj'> =/ (Pk: qk)'

Consequently, the first four conditions of the Proposition reduce to the following forms fori # j:
() pi =Py g =q;and py (p;, ;) < g (pj,q,»);
(i) p; <Py 4> q;and o, (p, @) = o (P )
This evidently contradicts the hypothesis that any one of the conditions as laid down in the

Proposition is satisfied for i # j. Therefore, our assumption about the possibility that any one of the

first four conditions of the Proposition is satisfied after replacing all i by k and allj by i in the first four

conditions of the Proposition is not valid. Thus, accordingly, any one of the above four conditions is
satisfied if we replace all i by k and allj by i. Therefore, we have

H

(iii) p; <p; q,_qjondpf(p,, q) = (pj, q

(V) p; 2Py ;> g;and g (P, q;) <y (p,,q,

Ps, (Pw i) = %(Pk’qk) =y (pna;) =

Further, if possible, let any one of the first four conditions of the Proposition is satisfied after replac-
ing all j by k only in the first four conditions of the Proposition.

Then
Pfj (Pj, qj'> =P =Py (P;, q,‘)‘
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Thus, accordingly, the first four conditions of the Proposition reduces to the following forms fori # j:
(i) p; S Pp 9; =q; and Py (P,-, Q,) < pr} (Pj, qj);
(i) p; £ P G; > q; and Py, (p,» q,') =’ (P,-, %);
(iii) p; < Pp 9; =q; and Py, (P,-, qi) = P); (Pj» qj);
(iv) p; < P G; > q; and s (p," Q,) < Pfj (Pj,qj>-

This also leads to a contradiction. Therefore, any one of the above four conditions is satisfied only
after replacing all j by k. We thus obtain

Pr, (Po i) = /’E (Poai) = »-

Our demonstration of Theorem 4 is evidently completed. O

Remark 5 Example 2 shows that the inequality sign in the assertion (4.28) of Theorem 4 cannot be
removed.

Example 2 For k,n € N, the functions

f@ =exp (z") and g(z) = exp™ (-2")
have their maximum moduli given by
Mc(r) = exp™ (r") and M (r) = exp™ (-r"),

respectively. Therefore, we have

logl'! M r logl' M (9]
J " and 9 ?
logr logr

are both constants for each | € N\ {1}. Thus, it follows that

[k+1] _ p[k+1] _

P . n,

but

p}”=pg]=oo =1k
and

pP] = pg[,l] =0 (>k+1.
Hence, we have

[k+1]

[k+1]
f9 f

=0<p + pgkﬂ] =2n.

THEOREM 7 Let f,(z) and ]j.(z) be any two entire functions with the index-pairs (p,.,q,.) and (pj,qj)
respectively, for p, p;, q;,q; € Nsuch that

p;zq and p;2q;.
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Suppose also that
Pt (P,-, q,') and Pt (Pj, qj)
are both non-zero and finite. Then, for

p= mox{pi,pj} and g=min {qi,qj},

UM(P, q) = o'ﬁ (pi’ qi)’

provided that any one of the first four conditions of the Proposition of Section 2 is satisfied fori # j and
q > 1. A similar relation holds true for the function {(z) given by

@
@

it being assumed that f(z) is an entire function.

i@

Proof Since the result is obvious when

UEE(P, q) =0,
we suppose that

0','[.); P, > 0.

We can clearly assume that of (P i) (k=1i,j)is finite. We assume also that any one of the first four
conditions of the Proposition of Section 2 is satisfied for i # j.

Let

max { o (P, 4,), 27 (P ;) } = 1 (P0) = 0

and

o (Pyq;) = 0.

We further let e > 0 and ¢, > 0 be arbitrary.

We begin by considering the following expression:
explP2 (6 + s)(log[q"l] r)p

expl2l (0' + %)(log[“] r)p

for all sufficiently large values of r. Indeed, for any 6 > 1, it follows from the above expression, for all
sufficiently large values of r 2 r, 2 r, that

explP2 (6 + s)(log[q"l] ro)ﬂ
expl2l (0' + %)(log[“] ro)

Now, in view of (1.5), we find from () that, for all sufficiently large values of r,

- - ACTD)
My o (r) < explo] [(%(ani) +£)(logh )" ]

x exp[pj_l] [(O'E_ (Pj, qj> + %) <log[qj—1] r>pff (pf’qi)],

(4.42)

~=6 (5>1).
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that is,

Mfi'fj(r) s exp[pil] [(o’ + %)(log[q‘ﬂ r)p]
* eXp[pf_l] '(Uﬁ- (pj’ qj) + %) <log[qj—1] r>pff (pf’qi):|‘

Now, in view of any one of the the first four conditions of the Proposition of Section 2 fori # j, we find
for all sufficiently large values of r that

o1 () st

> eXP[P/_l] [(6&- (quj> + %) (log[q/‘—l] r>% (pj'qj)]. (4.43)

Therefore, it follows from (4.43) that, for all sufficiently large values of r,
— 2
M () < explP-1] [(0' + %)(log[q 1 r) ] )
that is,
P
My ;) < expl?] [o + &)(logl* T r)].
By applying Theorem 4, we get from the above observations that, for all sufficiently large values of r,

log[p"l] Mﬁ-)j(r)

that is,

<o +eé),

log" M, . (r)
limsup —”’() So+e.
[ (log[qq] r)%.g P.q

Since e > O'is arbitrary, we have

GE.E_(P, q) = O (P,-, qi)- (4.44)
Next, without any loss of generality, we may assume that

(=1 (k=ij.
Also letr > R. Then, we find from (4.17), for a sequence of values of R tending to infinity, that

M (R) 2 explP-l [(afi (P a;) - e)(log[q’l] R)p]. (4.45)

Furthermore, by using (4.16), we have for all sufficiently large values of r that

M,;(r) < exp["ﬂ] [(ij (Pj’ q;) + f) (log[qj—l] r>"fj (pj’qf)“.

Since, in view of any one of the first four conditions of the Proposition of Section 2, we have
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ool [(% () +¢) (o5l <>]

< explP-tl [(0' + s)(log[q'l] r)p],

we readily conclude that

M (r) < explP-1] [(o + s)(log[q‘l] r)p]. (4.46)
J

Since r > R, we find from (4.45), for a sequence of values of r tending to infinity, that

M, (1) > M, R) > expl"] [(a - s)(log[q_l] R),,]

- (4.47)
> explP!] [(a - e)(log["’ ] 5) ]

Suppose now that z, is a point on the circle |z| = r such that

M (r) = |ﬁ.(zr) .

Then, since r > R, it follows from (4.37), (4.46) and (4.47) that, for a sequence of values of r tending
to infinity,

My () 2 (exp['“] [(a + e)(log[q_l] 4eR ),,] )_7
x explP1l [(0' - e)(log[q’l] %)p],

that is,

My 2 (exP[p_l] [(" + 5)<log[q‘1] 4ef>p] )77

’ (4.48)
x explP1 [(a - e)(log[q’l] %) ]
We also have
explP-?] [(o - s)(log[q‘l] =4 )/,]
lim ,; =
= | explp-?] {(0' +e)<log[q’1] 4er> }
So, for all sufficiently large values of r withr, > r; > r,, we may write
er. \” —1] 4er, \”
log [(o - s)(log[q‘l] 48—e> ] log [(o - s)(log[q 1 %) ]
=:0.
log [(a + e)(log[q’l] ber, ),,] log [(a + e)(log[q’l] 4er0)p]
Therefore, clearly, we obtain
5> 1.
Consequently, for the above value of 6, it can easily be verified that
P
explP-1] [(a - e)(log[q’l] %) ]
€ (4.49)

> exple-1 [{(a + e)(log[‘H] 4er)ﬂ }6]

Page 20 of 22



Downloaded by [Professor H. M. Srivastava)] at 12:22 12 April 2016

Srivastava et al., Cogent Mathematics (2015), 2: 1107951 o.lk»: Cogent —~mMm ath em atl CS
http://dx.doi.org/10.1080/23311835.2015.1107951

Also, if we apply Lemma 2, we find for all sufficiently large values of r that

{(a + e)(log[q_l] 4er>p }5]

2 (exp["‘l] [(a + s)(log[q'l] 4er>ﬂ] )8.

Now, in light of Theorem 4, it follows from (4.48), (4.49) and (4.50) that, for all sufficiently large val-
ues of r,

explP1l

(4.50)

Mf,}f]_(r) > exp[P‘l] [(0' + e)(log[q’l] 4er>p], (4.51)
that is,
loglP~] e (D)

5 2 (0 +e),

(log[‘H] 4er)

that is,

loglP~] Mg (1)

lim sup

2o0+¢ q> 1), (4.52)
r=e (log[q"l] r+ O(1))

g P:9)

so that
o110 @ 2 max {0, (p,9),; (P 9) | @>D. (4.53)
So, clearly, the first part of Theorem 5 follows from (4.44) and (4.53).

The part of the proof for the function {(z) given by

can easily be carried out along the lines of the corresponding part of the proof of Theorem 4. There-
fore, we omit the details involved.

The proof of Theorem 5 is thus completed. O

Our next result (Theorem 6) provides the condition under which the equality sign in the assertion
(4.28) of Theorem 4 holds true in the case of the condition (v) of the Proposition of Section 2.

THEOREM 8 Let f,(2) and f,(2) be any two entire functions such that

P D=, (0<p, (0= (P@) <)

and

or,(P, Q) # o1, (P, ).

Then

P, P D=2 P, D=0, (P, 1) (P,GEN;p2ZG>1). (4.54)

Proof The proof of Theorem 6 is much akin to that of Theorem 3, so we choose to omit the details
involved. O
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5. Conclusion

In Theorem 1, Theorem 2, Theorem 4 and Theorem 5 of our present investigation, we have discussed
about the limiting value of the lower bound under any one of the first four conditions of the
Proposition of Section 2. Moreover, in Theorem 3 and Theorem 6, we have also determined the limit-
ing value of the lower bound in Case (v) of the Proposition under some significantly different condi-
tions. Naturally, therefore, a question may arise about the limiting value of the lower bound when
any one of the last five cases of the Proposition is considered. This may provide scope for study for

the interested future researchers in this subject.
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