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Abstract: The main object of the present paper is to obtain new estimates involv-
ing the (p, q)-th order and the (p, q)-th type of entire functions under some suitable 
conditions. Some open questions, which emerge naturally from this investigation, 
are also indicated as a further scope of study for the interested future researchers in 
this branch of Complex Analysis.
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1. Introduction
A single-valued function of one complex variable, which is analytic in the finite complex plane, is 
called an entire (integral) function. For example, exp(z), sin z, cos z, and so on, are all entire func-
tions. In the value distribution theory, one studies how an entire function assumes some values and 
the influence of assuming certain values in some specific manner on a function. In 1926, Rolf 
Nevanlinna initiated the value distribution theory of entire functions. This value distribution theory is 
a prominent branch of Complex Analysis and is the prime concern of this paper. Perhaps the 
Fundamental Theorem of Classical Algebra, which may be stated as follows:

If P(z) is a non-constant polynomial in z with real or complex coefficients, then the equation 
P(z) = 0 has at least one root
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is the most well-known value distribution theorem. The value distribution theory deals with the 
various aspects of the behaviour of entire functions, one of which is the study of comparative growth 
properties of entire functions. For any entire function f (z) given by

we define the maximum modulus Mf (r) of f (z) on |z| = r as a function of r by

In this connection, for all sufficiently large values of r, we recall the following well-known inequalities 
relating the maximum moduli of any two entire functions fi(z) and fj(z):

and

On the other hand, if we consider zr to be a point on the circle |z| = r, we find for all sufficiently large 
values of r that

which implies that

In terms of the maximum modulus Mf (r) of the function f (z), the order �f  of the entire function f (z), 
which is generally useful for computational purposes, is defined by

Moreover, with a view to determining (e.g.) the relative growth of two entire functions with the same 
positive order, the type �f  of the entire function f (z) of order �f

(
0 < 𝜌f < ∞

)
 is defined by

The determination of the order of growth and the type of entire functions is rather important in order 
to study the basic properties of the value distribution theory. In this regard, several researchers 
made extensive investigations on this subject and presented the following useful results.

Theorem 1  (see Holland, 1973) Let f (z) and g(z) be any two entire functions of orders �f  and �g,  
respectively. Then

and

(1.1)f (z) =

∞∑

n=0

anz
n,

(1.2)Mf (r) = max|z|=r
{|f (z)|}.

(1.3)Mfi±fj
(r) < Mfi

(r) +Mfj
(r),

(1.4)Mfi±fj
(r) ≧ Mfi

(r) −Mfj
(r)

(1.5)Mfi ⋅fj
(r) ≦ Mfi

(r) ⋅Mfj
(r).

(1.6)Mfi ⋅fj
(r) = max

|z|=r

{|||fi(z) ⋅ fj(z)
|||
}
= max

|z|=r

{
||fi(z)|| ⋅

|||fj(z)
|||
}
,

(1.7)Mfi ⋅fj
(r) ≧ ||fi(z)|| ⋅

|||fj(z)
|||.

(1.8)�f : = lim sup
r→∞

{
log logMf (r)

log r

} (
0 ≦ �f ≦ ∞

)
.

(1.9)�f : = lim sup
r→∞

{
logMf (r)

r�f

} (
0 ≦ �f ≦ ∞

)
.

𝜌f+g = 𝜌g when 𝜌f < 𝜌g
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Theorem 2  (see Levin, 1996) Let f (z) and  be any two entire functions with orders �f  and �g,  
respectively. Then

and

By appropriately extending the notion of addition and multiplication theorems as introduced by 
Holland (1973) and Levin (1996), our main object in this paper is to give the corresponding exten-
sions of Theorem A and Theorem B. In our present investigation, we make use of index-pairs and the 
concept of the (p,q)-th order of entire functions for any two positive integers p and q with p ≧ q, 
which are introduced in Section 2. For the the standard definitions, notations and conventions used 
in the theory of entire functions, the reader may refer to (e.g. Boas, 1957; Valiron, 1949). Several 
closely-related recent works on the subject of our present investigation include (e.g. Choi, Datta, 
Biswas, & Sen, 2015; Datta, Biswas, & Biswas, 2013, 2015; Datta, Biswas, & Sen, 2015).

2. Definitions, notations, and preliminaries
Let f (z) be an entire function defined in the complex z-plane ℂ. Also let Mf (r) denote the maximum 
modulus of f (z) for |z| = r (0 < r < ∞) as defined by (1.2). In our investigation, we use the follow-
ing definitions, notations, and conventions:

and

Sato (1963) introduced a more general concept of the order and the type of an entire function than 
those given by (1.8) and (1.9).

Definition 1  (see Sato, 1963) Let l ∈ ℕ ⧵ {1}. The generalized order �[l]
f

 of an entire function f (z) is 
defined by

Definition 2  (see Sato, 1963) Let l ∈ ℕ ⧵ {1}. The generalized type �[l]

f
 of an entire function f (z) of the 

generalized order �[l]
f

 is defined by

Remark 1  When l = 2, Definitions 1 and 2 coincide with the Equations (1.8) and (1.9), respectively.

More recently, a further generalized concept of the (p,q)-th order and the (p,q)-th type of an  
entire function f (z) was introduced by Juneja et al. (see Juneja, Kapoor, & Bajpai, 1976, 1977) as 
follows.

�f ⋅g ≦ �g when �f ≦ �g.

�f+g ≦ max
{
�f , �g

}
,

�f ⋅g ≦ max
{
�f , �g

}
,

�f+g ≦ max
{
�f , �g

}

�f ⋅g ≦ �f + �g.

log
[0]
x = x and log

[k]
x = log

(
log

[k−1]
x
)

(k ∈ ℕ: = {1, 2, 3,…})

exp[0](x) = x and exp[k](x) = exp
(
exp[k−1](x)

)
(k ∈ ℕ).

(2.1)𝜌
[l]

f
= lim sup

r→∞

{
log

[l]
Mf (r)

log r

} (
l ∈ ℕ ⧵ {1}; 0 < 𝜌

[l]

f
< ∞

)
.

(2.2)𝜎
[l]

f
= lim sup

r→∞

{
log

[l−1]
Mf (r)

r
𝜌
[l]

f

} (
l ∈ ℕ ⧵ {1}; 0 < 𝜎

[l]

f
< ∞

)
.
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Definition 3  (see Juneja et al., 1976) Let p, q ∈ ℕ (p ≧ q). The (p, q)-th order �f (p, q) of an entire func-
tion f (z) is defined by

Definition 4  (see Juneja et al., 1977) Let p, q ∈ ℕ (p ≧ q). The (p, q)-th type �f (p, q) of an entire func-
tion f (z) of the (p, q)-th order �f (p, q)

(
b ≦ �f (p, q) ≦ ∞

)
 is defined by

where the parameter b is given by

Remark 2  By comparing Definitions 3 and 4 with Definitions 1 and 2, respectively, it is easily  
observed that

See also Remark 1 above.

Next, in connection with the above developments, we also recall the following definition.

Definition 5  (see Juneja et al., 1976) An entire function f (z) is said to have the index-pair (p, q)
(p ≧ q ≧ 1) if

and �f (p − 1, q − 1) is not a nonzero finite number, where b is given by (2.5). Moreover, if

then

and

The following proposition will be needed in our investigation.

Proposition 1  Let fi(z) and fj(z) be any two entire functions with the index-pairs 
(
pi , qi

)
 and 

(
pj , qj

)
, 

respectively. Then the following conditions may occur:

(i) � pi ≧ pj , qi = qj and 𝜌fi
(
pi , qi

)
> 𝜌fj

(
pj , qj

)
;

(ii) � pi ≧ pj , qi < qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(iii) � pi > pj , qi = qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(2.3)𝜌f (p, q) = lim sup
r→∞

{
log

[p]
Mf (r)

log
[q]
r

} (
0 < 𝜌f (p, q) < ∞

)
.

(2.4)𝜎f (p, q) = lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log
[p−1]

Mf (r)
�
log

[q−1]
r
�𝜌f (p,q)

⎫
⎪
⎬
⎪
⎭

�
0 < 𝜎f (p, q) < ∞

�
,

(2.5)b =

{
1 (p = q)

0 (p < q).

(2.6)�f (l, 1) = �
[l]

f
and �f (l, 1) = �

[l]

f
.

b < 𝜌f (p, q) < ∞

0 < 𝜌f (p, q) < ∞,

𝜌f (p − n, q) = ∞ (n < p), 𝜌f (p, q − n) = 0 (n < q)

�f (p + n, q + n) = 1 (n ∈ ℕ).
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(iv) � pi ≧ pj , qi < qj and 𝜌fi
(
pi , qi

)
> 𝜌fj

(
pj , qj

)
;

(v) � pi = pj , qi = qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(vi) � pi = pj , qi > qj and 𝜌fi
(
pi , qi

)
> 𝜌fj

(
pj , qj

)
;

(vii) � pi > pj , qi < qj and 𝜌fi
(
pi , qi

)
< 𝜌fj

(
pj , qj

)
;

(viii) � pi > pj , qi = qj and 𝜌fi
(
pi , qi

)
< 𝜌fj

(
pj , qj

)
;

(ix) � pi < pj , qi < qj and 𝜌fi
(
pi , qi

)
> 𝜌fj

(
pj , qj

)
;

(x) � pi > pj , qi > qj and �fi
(
pi , qi

)
≧ �fj

(
pj , qj

)
.

The following definition will also be useful in our investigation.

Definition 6  (see Bernal-González, 1988) A non-constant entire function f (z) is said to have the 
Property (A) if, for any 𝜎 > 1 and for all sufficiently large values of r, the following inequality holds 
true:

Remark 3  For examples of entire functions with or without the Property (A), one may see the earlier 
work (Bernal-González, 1988).

3. A set of Lemmas
Here, in this section, we present three lemmas which will be needed in the sequel.

Lemma 1  (see Bernal-González, 1988) Suppose that f (z) is an entire function, 𝛼 > 1, 0 < 𝛽 < 𝛼, s > 1 
and 0 < 𝜇 < 𝜆. Then

(a) Mf (𝛼r) > 𝛽Mf (r)

and

(b) � lim
r→∞

{
Mf

(
rs
)

Mf (r)

}
= ∞ = lim

r→∞

{
Mf

(
r�
)

Mf

(
r�
)

}
.

Lemma 2  (see Bernal-González, 1988) Let f (z) be an entire function which satisfies the Property (A). 
Then, for any integer n ∈ ℕ and for all sufficiently large values of r,

Lemma 3  (see Levin, 1980, p. 21) Let the function f (z) be holomorphic in the circle |z| = 2eR (R > 0) 
with f (0) = 1. Also let � be an arbitrary positive number not exceeding 3e

2
. Then, inside the circle |z| = R, 

but outside of a family of excluded circles, the sum of whose radii is not greater than 4�R,

where

[
Mf (r)

]2
≦ Mf

(
r�
)
.

[
M
f
(r)

]n
≦ M

f

(
r
𝛿
)

(𝛿 < 1).

log ||f (z)|| > −T(𝜂) logMf

(
2eR

)
,
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4. Main results
In this section, we state and prove the main results of this paper.

Theorem 3  Let fi(z) and fj(z) be any two entire functions with index-pairs 
(
pi , qi

)
 and 

(
pj , qj

)
, respec-

tively, where pi , pj , qi , qj ∈ ℕ are constrained by

Then

where

Equality in (4.1) holds true when any one of the first four conditions of the Proposition in Section 2 are 
satisfied for i ≠ j.

Proof  For

the result (4.1) is obvious, so we suppose that

Clearly, we can also assume that �fk
(
pk, qk

)
 is finite for k = i, j.

Now, for any arbitrary 𝜀 > 0, from Definition 3 for the 
(
pk, qk

)
-th order, we find for all sufficiently large 

values of r that

that is,

so that

Therefore, in view of (4.4), we deduce from (1.3) for all sufficiently large values of r that

Thus, by applying Lemma 1(a), we find from (4.5) for all sufficiently large values of r that

T(�) = 2 + log

(
3e

2�

)
.

pi ≧ qi and pj ≧ qj .

(4.1)�(
fi±fj

)(p, q) ≦ max
{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
,

p = max
{
pi , pj

}
and q = min

{
qi , qj

}
.

�(
fi±fj

)(p, q) = 0,

𝜌(
fi±fj

)(p, q) > 0.

(4.2)Mfk
(r) ≦ exp[pk]

[(
�fk

(
pk, qk

)
+ �

)
log[

qk] r
]

(k = i, j)

(4.3)
Mfk

(r) ≦ exp[max{p1,p2}]

[(
max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
+ �

)
log[

min{q1,q2}] r
]

(k = i, j),

(4.4)Mfk
(r) ≦ exp[p]

[(
max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
+ �

)
log[

q] r
]

(k = i, j).

(4.5)Mfi±fj
(r) < 2exp[p]

[(
max

{
𝜌fi

(
pi , qi

)
, 𝜌fj

(
pj , qj

)}
+ 𝜀

)
log[

q] r
]
.
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that is,

that is,

Therefore, we have

Since 𝜀 > 0 is arbitrary, it follows that

We now let any one of first four conditions of the Proposition in Section 2 be satisfied for i ≠ j (i, j = 1, 2). 
Then, since 𝜀 > 0 is arbitrary, from Definition 3 for the 

(
pk, qk

)
-th order, we find for a sequence of values of 

r tending to infinity that

Therefore, in view of the first four conditions of the Proposition in Section 2, we obtain for a sequence 
of values of r tending to infinity that

We next consider the following expression:

By virtue of the first four conditions of the Proposition of Section 2 and Lemma 1(b), we find from 
(4.9) that

Now, clearly, (4.10) can also be written as follows:

1

2
Mfi±fj

(r) < exp[p]
[(
max

{
𝜌fi

(
pi , qi

)
, 𝜌fj

(
pj , qj

)}
+ 𝜀

)
log[

q] r
]
,

Mfi±fj

(
r

3

)
< exp[p]

[(
max

{
𝜌fi

(
pi , qi

)
, 𝜌fj

(
pj , qj

)}
+ 𝜀

)
log[

q] r
]
,

log[
p]Mfi±fj

(
r

3

)

log[
q]
(
r

3

)
+ O(1)

< max
{
𝜌fi

(
pi , qi

)
, 𝜌fj

(
pj , qj

)}
+ 𝜀.

�fi±fj
(p, q) = lim sup

r→∞

⎧
⎪
⎨
⎪
⎩

log[
p]Mfi±fj

�
r

3

�

log[
q]
�
r

3

�
+ O(1)

⎫
⎪
⎬
⎪
⎭

≦ max
�
�fi

�
pi , qi

�
, �fj

�
pj , qj

��
+ �.

(4.6)�fi±fj
(p, q) ≦ max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
.

(4.7)
Mfk

(r) ≧ exp[pk]
[(

�fk

(
pk, qk

)
− �

)
log[

qk] r
]

(k = i, j).

(4.8)Mfi
(r) ≧ exp[p]

[(
max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
− �

)
log[

q] r
]
.

(4.9)
exp[pi]

[(
�fi

(
pi , qi

)
+ �

)
log[

qi] r
]

exp

[
pj

] [(
�fj

(
pj , qj

)
+ �

)
log

[
qj

]

r

] (i ≠ j).

(4.10)lim
r→∞

⎧
⎪
⎪
⎨
⎪
⎪
⎩

exp[pi]
��

�fi

�
pi , qi

�
+ �

�
log[

qi] r
�

exp

�
pj

� ��
�fj

�
pj , qj

�
+ �

�
log

�
qj

�

r

�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= ∞ (i ≠ j).
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where

but all of the equalities do not hold true simultaneously. So, from (4.11), we find for all sufficiently 
large values of r that

Thus, from (4.2), (4.8) and (4.12), we deduce for a sequence of values of r tending to infinity that

that is,

Therefore, from (4.8) and (4.13), and in view of Lemma 1(a) and (1.4), it follows for a sequence of 
values of r tending to infinity that

that is,

that is,

that is,

so that

which, for a sequence of values of r tending to infinity, yields

that is,

(4.11)lim
r→∞

⎧
⎪
⎪
⎨
⎪
⎪
⎩

exp[p]
��
max

�
�fi

�
pi , qi

�
, �fj

�
pj , qj

��
− �

�
log[

q] r
�

exp

�
pj

� ��
�fj

�
pj , qj

�
+ �

�
log

�
qj

�

r

�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= ∞,

p ≧ pj , q ≦ qj and max
{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
≧ �fj

(
pj , qj

)
,

(4.12)

exp[p]
[(
max

{
𝜌fi

(
pi , qi

)
, 𝜌fj

(
pj , qj

)}
− 𝜀

)
log[

q] r
]

> 2exp

[
pj

] [(
𝜌fj

(
pj , qj

)
+ 𝜀

)
log

[
qj

]

r

]
.

Mfi
(r) > 2exp

[
pj

] [(
𝜌fj

(
pj , qj

)
+ 𝜀

)
log

[
qj

]

r

]
,

(4.13)Mfi
(r) < 2Mfj

(r) (i ≠ j; i, j = 1, 2).

Mfi±fj
(r) ≧ Mfi

(r) −Mfj
(r) (i ≠ j),

Mfi±fj
(r) ≧ Mfi

(r) −
1

2
Mfi

(r) (i ≠ j),

Mfi±fj
(r) ≧

1

2
Mfi

(r) (i ≠ j),

Mfi±fj
(r) ≧

1

2
exp[p]

[(
max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
− �

)
log[

q] r
]
,

Mfi±fj

(
3r
)
≧ exp[p]

[(
max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
− �

)
log[

q] r
]
,

log[
p]Mfi±fj

(
3r
)

log[
q] (3r

)
+ O(1)

≧
(
max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
+ �

)
,
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so that

Clearly, therefore, the conclusion of the second part of Theorem 1 follows from (4.6) and (4.14). □

Remark 4  That the inequality sign in Theorem 1 cannot be removed is evident from Example 1 
below.

Example 1  Given any two natural numbers l and m, the functions

have their maximum moduli given by

respectively. Therefore, the following expressions:

are both constants for each k ∈ ℕ ⧵ {1}. Thus, obviously, it follows that

but

Consequently, we have

Theorem 4  Let fi(z) and fj(z) be any two entire functions with index-pairs 
(
pi , qi

)
 and 

(
pj , qj

)
, respec-

tively, where pi , pj , qi , qj ∈ ℕ are constrained by

Suppose also that �fi
(
pi , qi

)
 and �fj

(
pj , qj

)
 are both non-zero and finite. Then, for

lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p]Mfi±fj

�
3r
�

log[
q] �3r

�
+ O(1)

⎫
⎪
⎬
⎪
⎭

≧ max
�
�fi

�
pi , qi

�
, �fj

�
pj , qj

��
,

(4.14)
�fi±fj

(p, q) = lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p]Mfi±fj

(r)

log[
q] r

⎫
⎪
⎬
⎪
⎭

≧ max
�
�fi

�
pi , qi

�
, �fj

�
pj , qj

��
.

f (z) = exp[l]
(
zm

)
and g(z) = − exp[l]

(
zm

)

Mf (r) = exp
[l]
(
rm

)
and Mg(r) = exp

[l]
(
rm

)
,

log[
k]Mf (r)

log r
and

log
[k]
Mg(r)

log r

�
[l+1]
f

= �
[l+1]
g = m,

𝜌
[k]
f

= 𝜌
[k]
g =

{
∞ (2 ≦ k ≦ l)

0 (k > l + 1).

𝜌
[l+1]
f+g

= 0 < 𝜌
[l+1]
f

+ 𝜌
[l+1]
g = 2m.

pi ≧ qi and pj ≧ qj .

p = max
{
pi , pj

}
and q = min

{
qi , qj

}
,

(4.15)�fi±fj
(p, q) = �fi

(
pi , qi

)
,
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provided that any one of the first four conditions of the Proposition of Section 2 is satisfied for i ≠ j.

Proof  First of all, suppose that any one of the first four conditions of the Proposition of Section 2 is 
satisfied for i ≠ j. Also let 𝜀 > 0 and 𝜀1 > 0 be chosen arbitrarily. Then, from Definition 4 for the 

(
pk, qk

)

-type, we find for all sufficiently large values of r that

Moreover, for a sequence of values of r tending to infinity, we obtain

Therefore, from (1.3) and (4.16), we get for all sufficiently large values of r that

Now, in light of any one of the first four conditions of the Proposition in Section 2, for all sufficiently 
large values of r, we can make the factor:

which occurs on the right-hand side of (4.18), as small as possible. Hence, for any 𝛼 > 1 + 𝜀1, it fol-
lows from Lemma 1 (a) and (4.18) that

that is,

so that

for all sufficiently large values of r. Thus, by using (4.19), we find for all sufficiently large values of r 
that

Therefore, in view of Theorem 1, it follows from (4.20) that, for all sufficiently large values of r,

(4.16)
Mfk

(r) ≧ exp[pk−1]
[(
�fk

(
pk, qk

)
+ �

)(
log[

qk−1] r
)�f

k
(pk ,qk)

]
(k = i, j).

(4.17)Mfk
(r) ≧ exp[pk−1]

[(
�fk

(
pk, qk

)
− �

)(
log[

qk−1] r
)�f

k
(pk ,qk)

]
(k = i, j).

(4.18)

Mfi±fj
(r) ≦ exp[pi−1]

��
�fi

�
pi , qi

�
+ �

��
log[

qi−1] r
��f

i
(pi ,qi)

�

×

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 +

exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+ �

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦

exp[pi−1]
��
�fi

�
pi , qi

�
+ �

��
log[

qi−1] r
��f

i
(pi ,qi)

�

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(i ≠ j).

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 +

exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+ �

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦

exp[pi−1]
��
�fi

�
pi , qi

�
+ �

��
log[

qi−1] r
��f

i
(pi ,qi)

�

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(i ≠ j),

Mfi±fj
(r) ≦ exp[pi−1]

[(
�fi

(
pi , qi

)
+ �

)(
log[

qi−1] r
)�f

i
(pi ,qi)

](
1 + �1

)
,

(
1

1 + �1

)
Mfi±fj

(r) ≦ exp[pi−1]
[(
�fi

(
pi , qi

)
+ �

)(
log[

qi−1] r
)�f

i
(pi ,qi)

]
,

(4.19)Mfi±fj
(r) ≦ exp[pi−1]

[
�
(
�fi

(
pi , qi

)
+ �

)(
log[

qi−1] r
)�f

i
(pi ,qi)

]

(4.20)Mfi±fj
(r) ≦ exp[p−1]

[
�
(
�fi

(
pi , qi

)
+ �

)(
log[

q−1] r
)max

{
�f
1
(p1,q1),�f

2
(p2,q2)

}]
.

log[
p−1]Mfi±fj

(r) ≦ �
(
�fi

(
pi , qi

)
+ �

)(
log[

q−1] r
)max

{
�f
1
(p1,q1),�f

2
(p2,q2)

}

,
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that is,

Hence, upon letting � → 1+ in (4.21), we find for all sufficiently large values of r that

that is,

Again, from (1.4), (4.16) and (4.17), we see for a sequence of values of r tending to infinity that

Now, by virtue of any one of the first four conditions of the Proposition in Section 2, for all sufficiently 
large values of r, we can make the factor:

which occurs on the right-hand side of (4.23), as small as possible. Hence, for any � constrained by

it follows from Lemma 1(a) and (4.23) that, for a sequence of values of r tending to infinity,

that is,

so that

Therefore, by using (4.24), it follows for a sequence of values of r tending to infinity that

(4.21)

log[
p−1]Mfi±fj

(r)

[
log[

q−1] r
]�
(f1±f2)

(p,q)
≦

�
(
�fi

(
pi , qi

)
+ �

)(
log[

q−1] r
)max

{
�f
1
(p1,q1),�f

2
(p2,q2)

}

[
log[

q−1] r
]max

{
�f
1
(p1,q1),�f

2
(p2,q2)

} .

lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p−1]Mfi±fj

(r)

�
log r

��
(f1±f2)

(p,q)

⎫
⎪
⎬
⎪
⎭

≦ �fi

�
pi , qi

�
,

(4.22)�
(p,q)

(
fi ± fj

)
≦ �

(pi ,qi)
(
fi
)
.

(4.23)

Mfi±fj
(r) ≧ exp[pi−1]

��
�fi

�
pi , qi

�
− �

��
log[

qi−1] r
��f

i
(pi ,qi)

�

×

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −

exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+ �

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦

exp[pi−1]
��
�fi

�
pi , qi

�
− �

��
log[

qi−1] r
��f

i
(pi ,qi)

�

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(i ≠ j).

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −

exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+ �

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦

exp[pi−1]
��
�fi

�
pi , qi

�
− �

��
log[

qi−1] r
��f

i
(pi ,qi)

�

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(i ≠ j),

𝛽 >
1

1 − 𝜀1

,

Mfi±fj
(r) ≧ exp[pi−1]

[(
�fi

(
pi , qi

)
− �

)(
log[

qi−1] r
)�f

i
(pi ,qi)

](
1 − �1

)
.

(
1

1 − �1

)
Mfi±fj

(r) ≧ exp[pi−1]
[(
�fi

(
pi , qi

)
− �

)(
log[

qi−1] r
)�f

i
(pi ,qi)

]
,

(4.24)Mfi±fj
(�r) ≧ exp[pi−1]

[(
�fi

(
pi , qi

)
− �

)(
log[

qi−1] r
)�f

i
(pi ,qi)

]
.
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which, in the limit when � → 1+, yields

Thus, in view of Theorem 1, we find from (4.25) that

that is,

Theorem 2 now follows from (4.22) and (4.26). � □

Our next result (Theorem 3) provides the condition under which the equality sign in the assertion 
(4.1) of Theorem 1 holds true in the case of the condition (v) of the Proposition of Section 2.

Theorem 5  Let f1(z) and f2(z) be any two entire functions such that

and

Then

Proof  Under the hypotheses of Theorem 3, if we apply Theorem 1, it is easily seen that

Let us consider the case when

Then, in view of Theorem 2, we find that

which is a contradiction. Consequently, the assertion (4.27) of Theorem 3 holds true.�  □

Theorem 6  Let fi(z) and fj(z) be any two entire functions with the index-pairs 
(
pi , qi

)
 and 

(
pj , qj

)
,  

respectively, for pi , pj , qi , qj ∈ ℕ such that

Mfi±fj
(�r) ≧ exp[p−1]

[
(
�fi

(
pi , qi

)
− �

)(
log[

q−1] r
)max

{
�f
1
(p1,q1),�f

2
(p2,q2)

}]
,

(4.25)
lim sup
r→∞

⎧
⎪
⎪
⎨
⎪
⎪
⎩

log[
p−1]Mfi±fj

(r)

�
log[

q−1] r
�max

�
�f
1
(p1,q1),�f

2
(p2,q2)

�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

≧ �fi

�
pi , qi

�
.

lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p−1]Mfi±fj

(r)

�
log[

q−1] r
��
(f1±f2)

(p,q)

⎫
⎪
⎬
⎪
⎭

≧ �fi

�
pi , qi

�
,

(4.26)�
(p,q)

(
fi ± fj

)
≧ �

(pi ,qi)
(
fi
)
.

𝜌f1
(p, q) = 𝜌f2

(p, q)
(
0 < 𝜌f1

(p, q) = 𝜌f2
(p, q) < ∞

)

�f1
(p, q) ≠ �f2

(p, q).

(4.27)�f1±f2
(p, q) = �f1

(p, q) = �f2
(p, q) (p, q ∈ ℕ; p ≧ q).

�f1±f2
(p, q) ≦ �f1

(p, q) = �f2
(p, q).

𝜌f1±f2
(p, q) < 𝜌f1

(p, q) = 𝜌f2
(p, q).

�f1
(p, q) = �f1±f2∓f2

(p, q) = �f2
(p, q),

pi ≧ qi and pj ≧ qj .
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Then

where

Equality in (4.28) holds true when any one of the first four conditions of the Proposition of Section 2 is 
satisfied for i ≠ j. Furthermore, a similar relation holds true for the quotient

provided that the function �(z) is entire.

Proof  Since the result is obvious when

we suppose that 𝜌(fi ⋅fj
)(p, q) > 0. Suppose also that

We can clearly assume that �fk
(
pk, qk

)
 is finite for k = i, j.

Now, for any arbitrary 𝜀 > 0, we find from () that, for all sufficiently large values of r,

We further consider the expression:

for all sufficiently large values of r. Thus, for any 𝛿 > 1, it follows from the above expression that, for 
all sufficiently large values of r ≧ r1 ≧ r0,

Next, in view of (4.29) and (1.5), we have

for all sufficiently large values of r. Also, by applying Lemma 2, we find from (4.30) and (4.31) that, 
for all sufficiently large values of r,

that is,

(4.28)�fi ⋅fj
(p, q) ≦ max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
,

p = max
{
pi , pj

}
and q = min

{
qi , qj

}
.

�(z): =
fj(z)

fi(z)
,

�(
fi ⋅fj

)(p, q) = 0,

max
{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
= �.

(4.29)
Mfk

(r) ≦ exp[p]
[(

� +
�

2

)
log[

q] r
]

(k = i, j).

exp[p−1]
[
(� + �) log[

q] r
]

exp[p−1]
[(

� +
�

2

)
log[

q] r
]

(4.30)

exp[p−1]
[
(� + �) log[

q] r0

]

exp[p−1]
[(

� +
�

2

)
log[

q] r0

] = �.

(4.31)Mfi ⋅fj
(r) <

[
exp[p]

[(
𝜌 +

𝜀

2

)
log[

q] r
]]2

Mfi ⋅fj
(r) < exp[p]

[(
𝜌 +

𝜀

2

)
log[

q] r
]𝛿
,

Mfi ⋅fj
(r) < exp[p]

[
(𝜌 + 𝜀) log[

q] r
]
.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
H

. M
. S

ri
va

st
av

a]
 a

t 1
2:

22
 1

2 
A

pr
il 

20
16

 



Page 14 of 22

Srivastava et al., Cogent Mathematics (2015), 2: 1107951
http://dx.doi.org/10.1080/23311835.2015.1107951

Therefore, we have

so that

Since 𝜀 > 0 is arbitrary, it is easily observed that

We now let any one of the first four conditions of the Proposition of Section 2 be satisfied for i ≠ j. 
Then, without any loss of generality, we may assume that

We may also suppose that r > R. Thus, from (4.7) and in view of the first four conditions of the Propo-
sition of Section 2, we find for a sequence of values of R tending to infinity that

Also, by using (4.4), we get for all sufficiently large values of r that

In view of Lemma 3, if we take fj(z) for f (z), � =
1

16
 and 2R for R, it follows that

where

Therefore, the following inequality:

holds true within and on the circle |z| = 2R, but outside of a family of excluded circles, the sum of 
whose radii is not greater than

If r ∈ (R, 2R), then, on the circle |z| = r, we have

Since r > R, we see from (4.33) that, for a sequence of values of r tending to infinity,

log[
p]Mfi ⋅fj

(r)

log[
q] r

≦ (� + �),

�fi ⋅fj
(p, q) = lim sup

r→∞

log[
p]Mfi ⋅fj

(r)

log[
q] r

≦ (� + �).

(4.32)�fi ⋅fj
(p, q) ≦ � = max

{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
.

fk
(
0
)
= 1 (k = i, j).

(4.33)Mfi
(R) ≧ exp[p]

[
(� − �) log[

q] R
]
.

(4.34)Mfj
(r) ≦ exp[p]

[
(� + �) log[

q] r
]
.

log
|||fj(z)

||| > −T(𝜂) logMfj

(
2e ⋅ 2R

)
,

T(�) = 2 + log

(
3e

2 ⋅ 1

16

)
= 2 + log

(
24e

)
.

log
|||fj(z)

||| > −
(
2 + log

(
24e

))
logMfj

(4e ⋅ R)

4 ⋅
1

16
⋅ 2R =

R

2
.

(4.35)log
|||fj(z)

||| > −7 logMfj
(4e ⋅ R).
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We now let zr be a point on the circle |z| = r such that

Then, since r > R, it follows from (1.5), (4.34), (4.35) and (4.36) that, for a sequence of values of r 
tending to infinity,

that is,

that is,

that is,

Since

we may observe, for all sufficiently large values of r with rn > r1 > r0, that

Therefore, clearly, we have

Hence, for the above value of �, we can easily verify that

Also, in light of Lemma 2, we find for all sufficiently large values of r that

Now, from (4.38), (4.39) and (4.40), it follows for a sequence of values of r tending to infinity that

(4.36)

Mfi
(r) > Mfi

(R) > exp[p]
[
(𝜌 − 𝜀) log[

q] R
]

> exp[p]
[
(𝜌 − 𝜀) log[

q]
(
r

2

)]
.

Mfi
(r) =

|||fi
(
zr
)|||.

Mfi ⋅fj
(r) ≧

|||fj
(
zr
)|||Mfi

(r),

(4.37)Mfi ⋅fj
(r) ≧

[
Mfj

(4eR)
]−7
Mfi

(r),

Mfi ⋅fj
(r) ≧

(
exp[p]

[
(� + �) log[

q] (4eR)
])−7

⋅ exp[p]
[
(� − �) log[

q]
(
r

2

)]
,

(4.38)Mfi ⋅fj
(r) ≧

(
exp[p]

[
(� + �) log[

q] (4er)
])−7

⋅ exp[p]
[
(� − �) log[

q]
(
4er

8e

)]
.

lim
r→∞

⎧
⎪
⎨
⎪
⎩

exp[p−1]
�
(� − �) log[

q]
�
4er

8e

��

exp[p−1]
�
(� + �) log[

q] (4er)
�
⎫
⎪
⎬
⎪
⎭

= ∞,

log
[
(𝜌 − 𝜀) log[

q]
(
4er

n

8e

)]

log
[
(𝜌 + 𝜀) log[

q] (4er
n

)] <

log
[
(𝜌 − 𝜀) log[

q]
(
4er0

8e

)]

log
[
(𝜌 + 𝜀) log[

q] (4er0
)] = : 𝛿.

𝛿 > 1.

(4.39)exp[p]
[
(� − �) log[

q]
(
4er

8e

)]
≧ exp[p]

[(
(� + �) log[

q] (4er)
)�
]
.

(4.40)exp[p]
[(

(� + �) log[
q] (4er)

)�
]
≧
(
exp[p]

[
(� + �) log[

q] (4er)
])8

.

Mfi ⋅fj
(r) ≧ exp[p]

[
(� + �) log[

q] (4er)
]
,
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that is,

so that

Consequently, the second part of Theorem 4 follows from (4.32) and (4.41).

We may next suppose that

We also assume that any one of the conditions as laid down in the Proposition of Section 2 are satis-
fied for i ≠ j. Therefore, we can write

If possible, let any one of the first four conditions of the Proposition of Section 2 is satisfied after 
replacing all i by k and all j by i in the first four conditions of the Proposition. We then find that

Consequently, the first four conditions of the Proposition reduce to the following forms for i ≠ j:

(i) � pi ≦ pj , qi = qj and 𝜌fi
(
pi , qi

)
< 𝜌fj

(
pj , qj

)
;

(ii) � pi ≦ pj , qi > qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(iii) � pi < pj , qi = qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(iv) � pi ≦ pj , qi > qj and 𝜌fi
(
pi , qi

)
< 𝜌fj

(
pj , qj

)
.

This evidently contradicts the hypothesis that any one of the conditions as laid down in the 
Proposition is satisfied for i ≠ j. Therefore, our assumption about the possibility that any one of the 
first four conditions of the Proposition is satisfied after replacing all i by k and all j by i in the first four 
conditions of the Proposition is not valid. Thus, accordingly, any one of the above four conditions is 
satisfied if we replace all i by k and all j by i. Therefore, we have

Further, if possible, let any one of the first four conditions of the Proposition is satisfied after replac-
ing all j by k only in the first four conditions of the Proposition.

Then

log[
p]Mfi ⋅fj

(r)

log[
q] r + O(1)

≧ � + �,

(4.41)
�fi ⋅fj

(p, q) = lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p]Mfi ⋅fj

(r)

log[
q] r

⎫
⎪
⎬
⎪
⎭

≦ � = max
�
�fi

�
pi , qi

�
, �fj

�
pj , qj

��
.

fk(z) =
fj(z)

fi(z)
(i ≠ j).

fj(z) = fk(z) ⋅ fi(z).

�fj

(
pj , qj

)
= �fk

(
pk, qk

)
.

�fk

(
pk, qk

)
= � f

j

f
i

(
pk, qk

)
≦ �fi

(
pi , qi

)
= �.

�fj

(
pj , qj

)
= � = �fi

(
pi , qi

)
.
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Thus, accordingly, the first four conditions of the Proposition reduces to the following forms for i ≠ j:

(i) � pi ≦ pj , qi = qj and 𝜌fi
(
pi , qi

)
< 𝜌fj

(
pj , qj

)
;

(ii) � pi ≦ pj , qi > qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(iii) � pi < pj , qi = qj and �fi
(
pi , qi

)
= �fj

(
pj , qj

)
;

(iv) � pi ≦ pj , qi > qj and 𝜌fi
(
pi , qi

)
< 𝜌fj

(
pj , qj

)
.

This also leads to a contradiction. Therefore, any one of the above four conditions is satisfied only 
after replacing all j by k. We thus obtain

Our demonstration of Theorem 4 is evidently completed. � □

Remark 5  Example 2 shows that the inequality sign in the assertion (4.28) of Theorem 4 cannot be 
removed.

Example 2  For k,n ∈ ℕ, the functions

have their maximum moduli given by

respectively. Therefore, we have

are both constants for each l ∈ ℕ ⧵ {1}. Thus, it follows that

but

and

Hence, we have

Theorem 7  Let fi(z) and fj(z) be any two entire functions with the index-pairs 
(
pi , qi

)
 and 

(
pj , qj

)
,  

respectively, for pi , pj , qi , qj ∈ ℕ such that

�fk

(
pk, qk

)
= � f

j

f
i

(
pk, qk

)
= �.

f (z) = exp[k]
(
zn
)
and g(z) = exp[k]

(
−zn

)

Mf (r) = exp
[k]
(
rn
)
and Mg(r) = exp

[k]
(
−rn

)
,

log[
l]Mf (r)

log r
and

log[
l]Mg(r)

log r

�
[k+1]
f

= �
[k+1]
g = n,

�
[l]

f
= �

[l]
g = ∞ (2 ≦ l ≦ k)

𝜌
[l]
f

= 𝜌
[l]
g = 0 (l > k + 1).

𝜌
[k+1]
f ⋅g

= 0 < 𝜌
[k+1]
f

+ 𝜌
[k+1]
g = 2n.

pi ≧ qi and pj ≧ qj .
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Suppose also that

are both non-zero and finite. Then, for

provided that any one of the first four conditions of the Proposition of Section 2 is satisfied for i ≠ j and 
q > 1. A similar relation holds true for the function �(z) given by

it being assumed that �(z) is an entire function.

Proof  Since the result is obvious when

we suppose that

We can clearly assume that �fk
(
pk, qk

)
(k = i, j) is finite. We assume also that any one of the first four 

conditions of the Proposition of Section 2 is satisfied for i ≠ j. 

Let

and

We further let 𝜀 > 0 and 𝜀1 > 0 be arbitrary.

We begin by considering the following expression:

for all sufficiently large values of r. Indeed, for any 𝛿 > 1, it follows from the above expression, for all 
sufficiently large values of r ≧ r1 ≧ r0, that

Now, in view of (1.5), we find from () that, for all sufficiently large values of r,

�fi

(
pi , qi

)
and �fj

(
pj , qj

)

p = max
{
pi , pj

}
and q = min

{
qi , qj

}
,

�fi ⋅fj
(p, q) = �fi

(
pi , qi

)
,

�(z) =
fj(z)

fi(z)
,

�fi ⋅fj
(p, q) = 0,

𝜎fi ⋅fj
(p, q) > 0.

max
{
�fi

(
pi , qi

)
, �fj

(
pj , qj

)}
= �fi

(
pi , qi

)
= �

�fi

(
pi , qi

)
= �.

exp[p−2] (� + �)

(
log[

q−1] r
)�

exp[p−2]
(
� +

�

2

)(
log[

q−1] r
)�

(4.42)exp[p−2] (𝜎 + 𝜀)

(
log[

q−1] r0

)𝜌

exp[p−2]
(
𝜎 +

𝜀

2

)(
log[

q−1] r0

)𝜌
= 𝛿 (𝛿 > 1).

Mfi ⋅fj
(r) ≦ exp[pi−1]

��
�fi

�
pi , qi

�
+

�

2

��
log[

qi−1] r
��f

i
(pi ,qi)

�

× exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+

�

2

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦
,
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that is,

Now, in view of any one of the the first four conditions of the Proposition of Section 2 for i ≠ j, we find 
for all sufficiently large values of r that

Therefore, it follows from (4.43) that, for all sufficiently large values of r,

that is,

By applying Theorem 4, we get from the above observations that, for all sufficiently large values of r,

that is,

Since 𝜀 > 0 is arbitrary, we have

Next, without any loss of generality, we may assume that

Also let r > R. Then, we find from (4.17), for a sequence of values of R tending to infinity, that

Furthermore, by using (4.16), we have for all sufficiently large values of r that

Since, in view of any one of the first four conditions of the Proposition of Section 2, we have

Mfi ⋅fj
(r) ≦ exp[p−1]

��
� +

�

2

��
log[

q−1] r
���

× ⋅ exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+

�

2

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦
.

(4.43)

exp[p−1]
��

𝜎 +
𝜀

2

��
log[

q−1] r
�𝜌�

> exp

�
pj−1

� ⎡
⎢
⎢⎣

�
𝜎fj

�
pj , qj

�
+

𝜀

2

��
log

�
qj−1

�

r

�𝜌f
j

�
pj ,qj

�
⎤
⎥
⎥⎦
.

Mfi ⋅fj
(r) ≦ exp[p−1]

[(
� +

�

2

)(
log[

q−1] r
)�]2

,

Mfi ⋅fj
(r) ≦ exp[p−1]

[
(� + �)

(
log[

q−1] r
)�]

.

log[
p−1]Mfi ⋅fj

(r)
(
log[

q−1] r
)𝜌

< 𝜎 + 𝜀),

lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p−1]Mfi ⋅fj

(r)

�
log[

q−1] r
��f

i
⋅f
j
(p,q)

⎫
⎪
⎬
⎪
⎭

≦ � + �.

(4.44)�fi ⋅fj
(p, q) ≦ �fi

(
pi , qi

)
.

fk(0) = 1 (k = i, j).

(4.45)Mfi
(R) ≧ exp[p−1]

[(
�fi

(
pi , qi

)
− �

)(
log[

q−1] R
)�]

.

Mfj
(r) ≦ exp

�
pj−1

� ⎡
⎢
⎢⎣

�
�fj

�
pj , qj

�
+ �

��
log

�
qj−1

�

r

��f
j

�
pj ,qj

�
⎤
⎥
⎥⎦
.
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we readily conclude that

Since r > R, we find from (4.45), for a sequence of values of r tending to infinity, that

Suppose now that zr is a point on the circle |z| = r such that

Then, since r > R, it follows from (4.37), (4.46) and (4.47) that, for a sequence of values of r tending 
to infinity,

that is,

We also have

So, for all sufficiently large values of r with rn > r1 > r0, we may write

Therefore, clearly, we obtain

Consequently, for the above value of �, it can easily be verified that

exp

�
pj−1

� ⎡
⎢
⎢⎣

�
𝜎fj

�
pj , qj

�
+ 𝜀

��
log

�
qj−1

�

r

�𝜌f
j

�
pj ,qj

�
⎤
⎥
⎥⎦

< exp[p−1]
�
(𝜎 + 𝜀)

�
log[

q−1] r
�𝜌�

,

(4.46)Mfj
(r) < exp[p−1]

[
(𝜎 + 𝜀)

(
log[

q−1] r
)𝜌]

.

(4.47)
Mfi

(r) > Mfi
(R) > exp[p−1]

[
(𝜎 − 𝜀)

(
log[

q−1] R
)𝜌]

> exp[p−1]
[
(𝜎 − 𝜀)

(
log[

q−1] r

2

)𝜌]
.

Mfi
(r) =

|||fi
(
zr
)|||.

Mfi ⋅fj
(r) ≧

(
exp[p−1]

[
(� + �)

(
log[

q−1] 4eR
)�])−7

× exp[p−1]
[
(� − �)

(
log[

q−1] r

2

)�]
,

(4.48)
Mfi ⋅fj

(r) ≧
(
exp[p−1]

[
(� + �)

(
log[

q−1] 4er
)�])−7

× exp[p−1]
[
(� − �)

(
log[

q−1] 4er

8e

)�]
.

lim
r→∞

⎧
⎪
⎨
⎪
⎩

exp[p−2]
�
(� − �)

�
log[

q−1] 4er

8e

���

exp[p−2]
�
(� + �)

�
log[

q−1] 4er
���

⎫
⎪
⎬
⎪
⎭

= ∞.

log
[
(𝜎 − 𝜀)

(
log[

q−1] 4ern

8e

)𝜌]

log
[
(𝜎 + 𝜀)

(
log[

q−1] 4ern

)𝜌] >

log
[
(𝜎 − 𝜀)

(
log[

q−1] 4er0

8e

)𝜌]

log
[
(𝜎 + 𝜀)

(
log[

q−1] 4er0

)𝜌] = :𝛿.

𝛿 > 1.

(4.49)
exp[p−1]

[
(� − �)

(
log[

q−1] 4er

8e

)�]

≧ exp[p−1]
[{

(� + �)

(
log[

q−1] 4er
)�}�

]
.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
H

. M
. S

ri
va

st
av

a]
 a

t 1
2:

22
 1

2 
A

pr
il 

20
16

 



Page 21 of 22

Srivastava et al., Cogent Mathematics (2015), 2: 1107951
http://dx.doi.org/10.1080/23311835.2015.1107951

Also, if we apply Lemma 2, we find for all sufficiently large values of r that

Now, in light of Theorem 4, it follows from (4.48), (4.49) and (4.50) that, for all sufficiently large val-
ues of r,

that is,

that is,

so that

So, clearly, the first part of Theorem 5 follows from (4.44) and (4.53).

The part of the proof for the function �(z) given by

can easily be carried out along the lines of the corresponding part of the proof of Theorem 4. There-
fore, we omit the details involved.

The proof of Theorem 5 is thus completed.�  □

Our next result (Theorem 6) provides the condition under which the equality sign in the assertion 
(4.28) of Theorem 4 holds true in the case of the condition (v) of the Proposition of Section 2.

Theorem 8  Let f1(z) and f2(z) be any two entire functions such that

and

Then

Proof  The proof of Theorem 6 is much akin to that of Theorem 3, so we choose to omit the details 
involved.�  □

(4.50)
exp[p−1]

[{
(� + �)

(
log[

q−1] 4er
)�}�

]

≧
(
exp[p−1]

[
(� + �)

(
log[

q−1] 4er
)�])8

.

(4.51)Mfi ⋅fj
(r) ≧ exp[p−1]

[
(� + �)

(
log[

q−1] 4er
)�]

,

log[
p−1]Mfi ⋅fj

(r)
(
log[

q−1] 4er
)�

≧ (� + �),

(4.52)lim sup
r→∞

⎧
⎪
⎨
⎪
⎩

log[
p−1]Mfi ⋅fj

(r)

�
log[

q−1] r + O(1)
�𝜌f

i
⋅f
j
(p,q)

⎫
⎪
⎬
⎪
⎭

≧ 𝜎 + 𝜀 (q > 1),

(4.53)𝜎fi ⋅fj
(p, q) ≧ max

{
𝜎fi

(
pi , qi

)
, 𝜎fj

(
pj , qj

)}
(q > 1).

�(z) =
fj(z)

fi(z)

𝜌f1
(p, q) = 𝜌f2

(p, q)
(
0 < 𝜌f1

(p, q) = 𝜌f2
(p, q) < ∞

)

�f1
(p, q) ≠ �f2

(p, q).

(4.54)𝜌f1 ⋅f2
(p, q) = 𝜌f1

(p, q) = 𝜌f2
(p, q) (p, q ∈ ℕ; p ≧ q > 1).
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5. Conclusion
In Theorem 1, Theorem 2, Theorem 4 and Theorem 5 of our present investigation, we have discussed 
about the limiting value of the lower bound under any one of the first four conditions of the 
Proposition of Section 2. Moreover, in Theorem 3 and Theorem 6, we have also determined the limit-
ing value of the lower bound in Case (v) of the Proposition under some significantly different condi-
tions. Naturally, therefore, a question may arise about the limiting value of the lower bound when 
any one of the last five cases of the Proposition is considered. This may provide scope for study for 
the interested future researchers in this subject. 
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