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We study some relative growth properties of entire functions with respect to another entire function on the basis of generalized

relative type and generalized relative weak type.

1. Introduction

A single valued function of one complex variable which
is analytic in the finite complex plane is called an integral
(entire) function. For example expz, sinz, and cosz are
examples of entire functions. In the value distribution theory
one studies how an entire function assumes some values and
the influence of assuming certain values in some specific
manner on a function. In 1926 Rolf Nevanlinna initiated
the value distribution theory of entire functions. This value
distribution theory is a prominent branch of complex analysis
and is the prime concern of the paper. Perhaps the Funda-
mental Theorem of Classical Algebra which states that “if f
is a polynomial of degree n with real or complex coefficients,
then the equation f(z) = 0 has at least one root” is the most
well known value distribution theorem.

The value distribution theory deals with various aspects
of the behavior of entire functions one of which is the study
of comparative growth properties. For any entire function f,
the maximum modulus of f is the function M f(r) defined as

My () = max|f (2)] )

Similarly function M_(r) is defined for another entire
function g. The ratio M f(r)/Mg(r) as ¥ — 00 evaluates
the growth of f with respect to g in terms of their maximum
moduli.

However, the order of an entire function f which is
generally used in computational purpose is defined in terms
of the growth of f with respect to exp z function as

i loglog Mf (r)
Pr= Hfiillp loglog Meyp, ()
(2)
loglog M ¢ (r)
= limsup———.
r—00 logr

Bernal [1, 2] introduced the relative order between two
entire functions to avoid comparing growth just with exp z,
extending the notion of relative order as cit.op. Lahiri and
Banerjee [3] introduced the definition of generalized relative
order. In the case of generalized relative order, it therefore
seems reasonable to define suitably the generalized relative
type (generalized relative weak type) of an entire function
with respect to another entire function in order to compare
the relative growth of two entire functions having the same
nonzero finite generalized relative order (generalized relative
lower order) with respect to another entire function. In
this connection Datta et al. [4] introduced the definition of
generalized relative type (generalized relative weak type) of an
entire function with respect to another entire function.

For entire functions, the notions of the growth indicators
such as order and type (weak type) are classical in complex



analysis and, during the past decades, several researchers
have already been exploring them in the area of comparative
growth properties of composite entire functions in different
directions using the classical growth indicators. But, at that
time, the concepts of relative order (generalized relative
orders), relative type (generalized relative type), and relative
weak type (generalized relative weak type) of entire functions
and their technical advantages of not comparing with the
growth of exp z are not at all known to the researchers of
this area. Therefore the studies of the growth of composite
entire functions in the light of their relative order (generalized
relative orders), relative type (generalized relative type), and
relative weak type (generalized relative weak type) are the main
concern of this paper. In fact some light has already been
thrown on such type of works by Datta et al. in [4-8]. Actually,
in this paper, we study some relative growth properties of
entire functions with respect to another entire function on
the basis of generalized relative type and generalized relative
weak type.

2. Notation and Preliminary Remarks

Our notations are standard within the theory of Nevanlinna’s
value distribution of entire functions and therefore we do not
explain those in detail as available in [9]. In the sequel the
following two notations are used:

log[k]x = log (log[k_llx) fork=1,2,3,...;

log[o]x =X,
(3)
exp[k]x = exp (exp[k_l]x) fork=1,2,3,...;

exp[o] X =x.

Taking this into account, Juneja et al. [10] defined the
(p> q)th order and (p, q)th lower order of an entire function
f, respectively, as follows:

log[p]Mf (r)

>

,g) = limsu
Pf (P q) r—>oop log[q]r

» (4)
o logpr(r)
s (p.q) = liminf ————=

>

log[q] r

where p, q are any two positive integers with p > gq.

These definitions extended the definitions of order p and
lower order A ; of an entire function f which are classical in
complex analysis for integers p = 2 and q = 1 since these
correspond to the particular case pf(2, 1) = Py and /\f 2,1) =
A . Further, for p = I'and q = 1, the above definitions reduce
to generalized order pj[fl] [11] (resp., generalized lower order

A
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In this connection let us recall that if 0 < ps(p,q) < oo,
then the following properties hold:

ps(p-ngq) =00 forn<p,
ps(pg-n)=0 forn<g, (5)
pr(p+mg+n)=1 forn=12,....

Similarly, for 0 < A +(p,q) < 00, one can easily verify that
As(p-ngq)=o00 forn<p,
Ar(pg—n)=0 forn<gq, (6)

Ap(ptmg+n)=1 forn=1.2,....

Recalling that for any pair of integer numbers m, n the
Kronecker function is defined by §,,,, = 1 for m = n and
0,,n = 0 for m # n, the aforementioned properties provide
the following definition.

Definition 1 (see [10]). An entire function f is said to have
index-pair (1,1) if 0 < pf(l, 1) < oo. Otherwise, f is said
to have index-pair (p,q) # (1,1), p > q > 1,if 6, ;o <

ps(p,q) <ooand ps(p-1,9-1) ¢ R".

Definition 2 (see [10]). An entire function f is said to have
lower index-pair (1,1) if 0 < )Lf(l, 1) < oo. Otherwise, f is
said to have lower index-pair (p,q) # (1,1), p =2 g > 1, if
8pqo <Ap(p,g) <ooand Ap(p-1,q-1) ¢ R".

Remark 3. An entire function f of index-pair (p, q) is said to
be of regular (p, q)-growth if its (p, q)th order coincides with
its (p, q)th lower order, otherwise f is said to be of irregular
(p> q)-growth.

To compare the growth of entire functions having the
same (p,q)th order, Juneja et al. [12] also introduced the
concepts of (p,q)th type and (p,q)th lower type in the
following manner.

Definition 4 (see [12]). The (p, q)th type and the (p, q)th lower
type of entire function f having finite positive (p, q)th order
pr(p>q) (b < ps(p,q) < 00) are defined as

log* "M (r)
os(p,q) =lim sup—————,
f (p q) rqoop(log[q,l]r)l)f(?’q)

log!? VM, (r (7)
75 (p.q) =lim inf g—ffpl)
(log ™)™

where p, g are any two positive integers, b = 1 if p = g, and
b=0forp>q.

Remark 5. For p = land g = 1, the above definitions reduce

to generalized type O'J[cl] and generalized lower type ng] of an
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entire function f. Moreover, when p = 2 and g = 1, then 0}2]

and E[fz] are correspondingly denoted as 0 ; and o' which are,
respectively, known as type and lower type of entire f.

Now we introduce the following definitions in order to
determine the relative growth of two entire functions having
the same nonzero finite (p, q)th lower order in the following
manner.

Definition 6. The (p, q)th weak type 7;(p,q) and the growth
indicator T;(p,q) of an entire function f having finite
positive (p,q)th lower order /\f(p, q) (b < Af(p, q) < ©00)
are defined by

log[P_l]Mf (r
7. (p,g) =lim inf ————|
f (p q) r—00 (log[q_llr)Af(P’q)

log[p_l]Mf (r) (8)
(log[q—l]r)’\f(}”q) ’

0< )Lf(p,q) < 00,

where p, g are any two positive integers, b = 1 if p = g, and
b=0forp>q.

7, (p,q) = lim sup

r—00

Remark 7. If we consider p = [ and g = 1 in the above
definitions, then the growth indicators Tf(l, 1)andT f(l, 1) are

correspondingly denoted as TJ[(” ??1. Further, for p = 2

and g = 1, the above definition reduces to the classical

definition as established by Datta and Jha [13]. Also s and

= [2] =[2]
Ty stand for 7y and T

and

For any two entire functions f and g, Bernal [1, 2]
initiated the definition of relative order of f with respect to
g> indicated by p,(f), as follows:

Py (f)

=inf{y>0:Mf(r)<Mg(r“), Vr>r0(y)>0} ©)

logM;le (r)

= lim sup 0
ogr

r—00
which keeps away from comparing growth just with expz
to find out order of entire functions as we see earlier and of
course this definition corresponds with the classical one [14]
for g = expz.

Remark 8. In line with the above definition, one may define
the relative lower order of f with respect to g, denoted by

/\g(f), as
logM;IMf (r)

(10)
logr

Ay (f) =1lim inf

Extending this notion, Lahiri and Banerjee [3] gave a

more generalized concept of relative order in the following
way.

Definition 9 (see [3]). If | > 1 is a positive integer, then the
Ith generalized relative order of f with respect to g, denoted
by pll'(f), is defined by

py (f) =inf { > 0: My (r) < M, (exp™'r), vr

log"M;' M, (r) ()

>, (u) > 0} = lixgligp ogr

Clearly py''(f) = py(f) and pl .(f) = py-

Remark 10. Likewise one can define the generalized relative
lower order of f with respect to g denoted by /\z] (f)as

(12)

Moreover to compare the relative growth of two entire
functions having the same nonzero finite generalized relative
order with respect to another entire function, Datta et al.
[4] introduced the definition of generalized relative type and
generalized relative lower type of an entire function with
respect to another entire function, which are as follows.

Definition 11 (see [4]). Assume that f and g are entire
functions with 0 < pg] (f) < co. The generalized relative type
og] (f) and generalized relative lower type E[g” (f) of f with
respect to g are defined as

log[H]M;le (r)

rpgl 62

oy (f) =1lim sup ,
(13)
log[H]M;le (r)

1 ..
I = lim inf
g (f) rPf[Jl](f)

r—00

For | = 2, Definition 11 reduces to classical definition as
established by Roy [15].

Further, to determine the relative growth of two entire
functions having the same nonzero finite generalized relative
lower order with respect to another entire function, Juneja et
al. [10] introduced the concepts of generalized relative weak
type and growth indicator of an entire function with respect
to another entire function in the following manner.

Definition 12 (see [4]). The generalized relative weak type
Tg] (f) and the growth indicator ?g] (f) ofan entire function f
with respect to another entire function g having finite positive
generalized relative lower order /\Z] (f) are defined as

log™ MM (r)
‘rg] (f) =liminf 8 g "f

>

r—00 r,\[;] (f)
- _
0y o o OB MMy (1) (14)
T (f) = limsup T ,
r—00 g

[0
0 <Ay (f) < co.



Remark 13. For | = 2, Definition 12 reduces to the classical
definition as established by Datta and Biswas [8].

3. Lemmas

In this section we present two lemmas which will be needed
in the sequel.

Lemma 14 (see [16]). Let f be an entire function with 0 <
/\[’"] < p['"] < 00 and let g be entire of regular (m, p)-growth,
where p and m are positive integers such that m > p. Then

o7 (f) = P
b )= oy
i 15)
A[P] (f) _ (m p)

Lemma 15 (see [16]). Let f be an entire function with 0 <
/\[;"] = p)[(m] < 00 growth and let g be entire with 0 <

Ag(m, p) < p,(m, p) < 0o, where p and m are positive integers
such that m > p. Then

[m]
Vol (py o FT
o = )
[p] 16)
A= oy

4. Main Results

In this section we present the main results of the paper.

Theorem 16. Let f be any entire function with 0 < p[m] < 00

and let g be any entire function with index-pairs (m, p) where
p and m are positive integers such that m > p. Also let g be of
regular (m, p)-growth. Then

oy
o, (m, p)
—[m) I/Pg(m)P)
o
< min _; N
o, (m,p)

[m] 1/py(m,p)
_
ay (m, p)

6'[;”] 1/pg(m.p)
< max - < 5
a4 (m. p)

<3/ (f)

} 1/p,(m.p)
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[m] 1/py(m,p)
% ()
Ty (m, p) =% <2
(m] 1/py(m,p)
f
< | =———=
[% (m,p)}

17)

Proof. Fix € > 0. From the definitions of o
have for all sufficiently large values of  that

I'and c_rgfm] we

My (r) < exp[m_u {( [fm] + s) P}m]}, (18)
My (r) 2 exp[m_” {(55,"'] - s) rPJ[‘m]} (19)

and also for a sequence of values of r tending to infinity we
get that

Mg (r) 2 exp[m_” {(aj[fm] - 8) rpi[‘m]} , (20)

G )} @

Mg (r) < exp[

Similarly, from the definitions of crg(m, p) and c_rg(m, p), it
follows for all sufficiently large values of r that

M, (r) < exp™ ! {(ag (m, p) + s) (log[P_l]r)Pg(m’p)}
ie,r < M;l [exp[m_” {(Gg (m, p) + s)

' (log“’_”r)pg(m’m}]

m— 1/py(m,p)
ie, M, (r) > exp!! < log""Tr ) ’
e, M (r) 2 ,
(ag (m, p) +£)

M, (r) = exp™ ! {(Eg (m, p) - s) (log[pfllr)pg(m’m}

(22)

ie,r > M;l [exp[mfl] {(Eg (m, p) - 5)

(o] >

log™ 1y 1/pglemp)
i.e.,M;1 (r) < expP™! (_g—) ,
Gym) -9
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31111(1 for a sequence of values of r tending to infinity we obtain M, (r) < exp™ ! {(Eg (m, p) + 8) (log[P-llr)Pg(’"’P)}
a
m— _ py(m,p) ie,r< M_l [ [m-1] { — i
M, (r) = exp!™! {(og (m, p) - s) (log[p ”r) 7 } Le. T g P (09 (m. p) + 8)

_ (m,p) (25)
ie,r > M;l [exp[m_” {(ag (m, p) - s) ) (log[p I]T)Pg g H

1) \Po () (24) (m-1] Upy(m.p)
’ (log[P 1]r)pg g H i.e.,M;1 (r) > exp[P_l] l(—( log r )> .

Eg (m’ p) —€
10 [m_l]r' I/Pg(m)P)
ie., M;l (r) < exp“’ -1 (g_) , Now, from (20) and in view of (22), we get for a sequence of
(Ug (. p) = 8) values of r tending to infinity that

o1 ) g o™ (7))

[m] 1/Pg(m’P)
log!™ Hexpltm1l {(a[fm] - s) rPr }

(og (m, p) + s)

ie., log[p_”M;le (r) > log[p—llexp[p—ll

- (a“”] ~ 8) 2 1/py(m,p) . (26)
ie., log[P_l]M;IMf (r) = f— . pPr /pg(m,p)
| (ag (m, p) + e) ]
- ~1/pg(m.p)
i [ (g ]”
T e T | (0, (m,p) )
As g(> 0) is arbitrary, in view of Lemma 14, it follows that Analogously from (19) and in view of (25) it follows for a
sequence of values of r tending to infinity that
[p-1] 5 r-1 T im] VPP
log"™ "M "M (r) oy
lim sup o >
r—co 27 ) o, (m, p)
) ) 27)
- G[m] q1/py(m.p)
esof ()2 | 2
ie,o > | ——
! | 04 (m.p) |
loe® UM log? U [expl1 [ (glm oy
og 4 f(r)z og s |eXP (of —s)r
[m] 1/p,(m,p)
log™ Hexplm1] {(E[f"’] - e) rPs } ’
i.e.,log[P_l]M;IMf (r) > log!? Hexp!?™! (_ o p) )
o, (mp)+e
g
i 28)
- —[m] _ 1/py(m,p) (
(7" -e)

i.e.,log[‘D_l]M;Mf (r) = . Pf Pg(mep)

I (Eg (m, p) + s)

1], - r _ 1 1/ pg(m,p)
log!? 1]Mgle (r) N (Gﬁfm] - s)

P esmp) | (G, (m, p) +e)

ie.,
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Since e(> 0) is arbitrary, we get from the above and Lemma 14 Again in view of (23) we have from (18), for all sufficiently

that large values of r, that
o 11/ pg(m.p)
log[p—l]M\;le (1’) O,ﬁ[m] Pg(m,p.
lim sup o 2| =
r—co rpd () o, (m,p)
] ] (29)
E[M] q1/py(m,p)
.o (N | =2
ie,o > —F——
! | 9, (m. p)

log“H]M;le (r) < log[pfllMg1 [explmil] {(oj[cm] + s) P H

[m] 1/p,(m,p)
log" Hexp!™l {(GJ[Z"] + e) rPs } ’

Le., log[P_l]M;IMf (r) < log[p—llexp[p—ll

(Eg (m’ p) - 8)
r 1 Vpy(m,p) (30)
(GJ[Z"] + s) Po -
ie,log? MM, (r) < | ————— P py(mp)
I (ag (m, p) —s) ]
r m ~ 1/pg(m.p)
ety @) [ (oee) )
ie, — <|— )
P Py mop) (5, (m,p) —¢)
Since &(> 0) is arbitrary, we obtain in view of Lemma 14 that Again, from (19) and in view of (22), we get for all sufficiently
large values of r that
r 1 1/ pg(m.p)
log[P_l]M;IMf (T) O_][(m] PH m.p
lim sup = < | =
r—00 P () o, (m, p)
i ' (31)
r O‘][(m] 7 1/pg(m.p)
: [p] (f) | -1
ie,o < | =
! 7, (m, p)
[m]
log! 1M, M, (r) = log "M [expt () — &) 1"} ]
log[m—l]exp[m_l] {(E[m] B 8) rp}m]} 1/py(m,p)
i.e.,log? M, M (r) 2 logl? exp!? ™! f
(ag (m, p) + s)
(32)

r (—[m] ) q I/Pg(m,P)
g —& (]
ie,log? M M, (r) 2 / P 1py(mp)

_(69 (m,p)+s)_

-/ 1 1/ pg(m.p)
log[Pfl]M;IMf (r) N (G[fm] - e) !

o esmp) | (o, (m, p) + )

ie.,




Journal of Complex Analysis 7

As e(> 0) is arbitrary, it follows from the above and Lemma 14 Also, in view of (24), we get from (18) that, for a sequence of

that r tending to infinity,
_ . o — 11/ pg(m.p)
log[P 1]Mgle (r) G[fm] P
lim inf = >
r—c0 s () o, (m, p)
] ) (33)
E[M] q1/py(m.p)
e g ()2 | =2
Le., 0 =
! o, (m, p)

tog! "1, M, () < log M [expl™ {6} + ) 7]

[m] 1/pgy(m,p)
1 1 1 1 IOg[m_l]exp[m_l] {(O.J[(m] + 8) rpf } g
ie.,log?” ]M; My (r) < log? Mexp!P~!l

(o, (m, p) - ¢)
r [m] 1 1/pg(m:p) (34)
1 1 (of +£> [m]
ie,log? M M (r) < W P pglmp)
| (og(m,p)—¢) |

- ~1/py(m,p)
log!? M, M, (r) _ (o +e) ’

ie., T p) <
rPr 1PgtM __(Gg(m’p)_s)_

Since (> 0) is arbitrary, we get from Lemma 14 and the above Similarly, from (21) and in view of (23), it follows for a

that sequence of values of r tending to infinity that
_ _ r 11/ pg(m.p)
log!? 1]Mgle (r) ajlfm] !
liminf = <
r—00 rPgP ) Gg (m’ p)
] ] (35)
_ a[m] q1/pg(m.p)
ie,a/ (f) < | —2
ie,o S| ——=
! | 94 (m.p) |

log?" 10! (r) < log!? ! [exp™ " {(@ +.) 7" ]

m 1/pg(m,p)
log[m—l]exp[m—l] {(E[fm] + 8) rP} 1} 9
i.e.,log[P_l]M;IMf (r) < log[p—llexp[p—ll ~
(Gg (m’ P) - 5)

T (G e) 17 (36)
: [p—1] 5 -1 Uf € o710 (m,p)
e, log MM ) < | = e

L (Gg (m’P) - 8)

-/ 1 V/pg(m.p)
log[Pfl]M;IMf (r) 3 (Gﬁfm] + s) !

o eame) | (G, (m, p) —e) |

ie.,




Ase(> 0) isarbitrary, we obtain from Lemma 14 and the above
that

_ _ r_ q1/py(m,p)
log[p 1]M 1M (r) chm] Po
lim inf ] < | =
AT 7, (m.p)
) (37)
—im] | YPemp)
e, (1) < | =
ie., o < | ——
! a4 (m, p) |

Thus the theorem follows from (27), (29), (31), (33), (35), and
(37). ]

In view of Theorem 16, one can easily verify the following
corollaries.

Corollary17. Let f be an entire function such that oj[cm] = 55('"]

and let g be an entire function of regular (m, p)-growth, where
p and m are all positive integers such that m > p. Then

8 O'[m] 7 1/Pg(m»P)
P D=5
% 3, (m.p) !
i 38
_ (m] - l/pg(m,p) ( )
| %F
O'g (f)_ O'g(m,P)

Corollary 18. Let f be an entire function with 0 < pj[(m]

and let g be entire function of perfectly regular (m, p)-growth,
where p and m are positive integers with m > p. Then

<00

r [m] q1/pg(m.p)
o
[p] _ f
Gﬂ (f) - Ug (m’ p) >
] ] (39)
r E[m] q1/py(m.p)
—[p] _ f
(Ig (f)_ Gg(ﬂ%p)
In addition, if aj[, = 05:"], then
O‘}m] 1/py(m,p)
[p] (f) = —[p] (f) = (m o) ] (40)
Iy

[m]

Corollary 19. Let f be an entire function with 0 < Py
Then, for any entire function g,

(i) 5 (f) = o when o, (m, p) = 0,
(ii) o(f) = 0o when G (m, p) = 0,
(iii) G () = 0 when o, (m, p) = co
(iv) o)(f) = 0o when 5 ,(m, p) = co

where p is any positive integer with m > p and g is of regular
(m, p)-growth.
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Corollary 20. Let g be an entire function with regular
(m, p)-growth where m, p are positive integers with m > p.

Then, for any entire function f with 0 < p[m] < 00, one has

5 1P _ [m] _
(1)ag (f)—Owhenaf =0,

i\ =[p] _ —[m] _
(ii) o, (=0 whencrf =0,

[m]

sy [pl _ _
(iii) o, (f) = 0o when o;" =00,

(iv) o 0 (f) = co when agcm] 0.

In line with Theorem 16 and with the help of Lemma 15,
one can prove the following theorem, and therefore its proof
is omitted.

Theorem 21. Let f be any entire function with 0 < /\[fm] =

p}"’] < oo and let g be any entire function with index-pairs

(m, p), where p and m are positive integers such that m > p.
Then

E[m] 1/py(m,p)
|i0 (:” p) ] : T![]p] (/)
g bl

_[m 1/py(m,p)
< min |:

a,(m, p)

l/p (m,p)
O_[m 9
T (

_[m] 1/py(m,p)
[ (m, p)]
P

]
(41)
< max
[m] I/Pg(m p)
=[pl
<7/ (f)

o [m] 1/py(m,p)
< o
a, (m, p)

In view of Theorem 21, one can easily derive the following
corollaries.

Corollary 22. Let f be an entire function with 0 < A[m] =

p}m] < 0o and O‘J[[ af Vand let g be an entzrefunctzon with
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index-pairs (m, p), where p and m are positive integers such
that m > p. Then

r O’[m] q1/py(m,p)
VD=0

fo VTG (mp) ’
) ’ (42)
r [m] b l/pg(m,p)

Wep o | %S
Tg (f) O_g(m)p)‘

Corollary 23. Let f be an entire function with 0 < )L[;n]

p}m] < 0o and let g be an entire function with o,(m, p) =

a,(m, p). Then

_ G[m] q l/pg(m,p)
EHOR Ps
T - 2N >
! o, (m. p) |
(43)
, r 6'[;”] q1/pg(m.p)
()= —F—
! o, (m. p) |
In addition, if aj[f”] = E}m], then

a[m] 1pq(m.p)
7l () =P (f) = _r . (44)
g I a, (m, p)

Corollary 24. Let g be an entire function with index-pairs
(m, p), where p and m are positive integers such that m > p.
Then, for any entire function f with 0 < A[m] = p[m]
has

< 00, one

(i) T;P](f) = 00 when o,(m, p) = 0,
(ii) ?[gf’] (f) = 0o when @ ,(m, p) = 0,
(iii) Tg(f) = 0 when a,(m, p) = 0o

(iv) TN f) = 0o when G, (m, p) = 0o
Corollary 25. Let f be an entire function with 0 < )t[}”] =

p}m] < ©00. Then for any entire function g with index-pairs

(m, p), where p and m are positive integers such that m > p,
one has

i) 7/(f) = 0 when o)™ = 0,
| [m]
(ii) T, (f) = Owhenaf =0,
(iii) ?[gp 1(f) = co when GJ[('"] = 00,
(iv) T;P] (f) = co when aﬁ,m] 0.

Similarly, in line with Theorems 16 and 21 and with the
help of Lemmas 14 and 15, one may easily prove the following
two theorems, and therefore their proofs are omitted.

Theorem 26. Let f be any entire function with 0 < A[}"] < 00

and let g be any entire function with index-pairs (m, p), where
p and m are positive integers such that m > p. Also let g be of
regular (m, p)-growth. Then

T[m] 1/A4(m,p)
[%} <77 (f)

7, (mp
T.[fm] 1/A 4(m,p)
< min —_— 5
7, (m, p)
1//\ (m.p)

—[m
[T (m, p)
LM
<maxd | —L
7, (m, p)

[ 7 ] 1/A4(m,p)
7, (m, p)

(45)

jll/lg(m)P)

<7 (f)

In view of Theorem 26, the following corollaries may also
be obtained.

Corollary 27. Let f be an entire function such that TJ[C’"] =7im

and let g be an entire function of regular (m, p)-growth, where
p and m are positive integers such that m > p. Then

[m] q1/A4(m,p)

=lp] _ f

Tg (f) Tg (m) p) >
) ’ 46
- [m] q1/A4(m,p) (46)

i

A e

Corollary 28. Let f be an entire function with 0 < )L[}”] <00

and let g be an entire function of regular (m, p)-growth, where
p and m are positive integers such that m > p with 7,(m, p) =

?g(m, p). Then

- ?[m] q1/A4(m,p)

=[pl f

7, (f) = = mp) ,
) ’ (47)
r T[m] q1/A4(m,p)

D= =
T 7 )
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In addition, zf‘r[m] = T[m] then

?[m] 1/A 4(m,p)
I . (48)

[p] (f) = —[p] (f) =
7y (m, p)
Corollary 29. Let f be an entire function with 0 < A[;"] < 00

and let g be an entire function of regular (m, p)-growth, where
p and m are positive integers such that m > p. Then

(i) 7P1(f) = o when T ,(m, p) = 0,
(ii) 7F(f) = co when T,(m, p) = 0,
(iii) T f) = 0 when T, (m, p) = co
(iv) 720 f) = 00 when 7,(m, p) = co

Corollary 30. Let g be an entire function with regular
(m, p)-growth, where p and m are all positive integers such that

m > p. Then, for any entire function f with 0 < A[}"] < 00,
one has

(i) ?[gp](f) 0 when T;’"] =0,
(i) Tf[?p] (f) = 0 when ‘rj[fm] =0,

(iii) ?Lp] (f) = 0o when T;m] = 00,

= 00 when T}m] = 00.

iv) 7 f)

Theorem 31. Let f be any entire function with 0 < /\[an] =

p}m] < oo and let g be any entire function with index-pairs

(m, p), where p and m are positive integers such that m > p.
Then

Ll 1A, (m,p)
E o
g bl

T Ve T Sl T 1/, (m,p)
<mind| —L—| . |=F—
| (mp) | | Ty (mp) |
49
- Q1A q1/A,(m,p) (49)
T[m] 9 T[m] g
< max —f N _4
74 (m. p) | Ty (m.p) |

?[m] } 1/Ag(m.p)

7 (m, p)
From Theorem 31 the following corollaries are immediate.

Corollary 32. Let f be an entire function with 0 < /\[Jf”] =

(m] [m]

[m] _
pf <ooandT =1

and let g be an entire function with

Journal of Complex Analysis

index-pairs (m, p), where p and m are positive integers such
thatm > p and A ;(m, p) > 0. Then

r —[m] h I/Ag(m,p)
i
pl _
(f) = mp)
) ’ (50)

?[m] q1/A4(m,p)

6[1’] — f
105

Corollary 33. Let f be an entire function with regular growth
and let g be an entire function with 7,(m, p) = T,(m, p), where
p and m are positive integers such that m > p. Then

?[m] R l/lg(m,p)
O ) :

7y (m. p) |
51
r [m] q1/A4(m,p) ( )

=lpl (£ _ f
O‘g (f) ?g(m)p)-

In addition, zf‘r[m] = T[m] then

7, (m,

Corollary 34. Let g be an entire function with index-pairs
(m, p), where p and m are positive integers such that m > p
and A (m, p) > 0. Then, for any entire function f with 0 <

?[m] 1/A4(m,p)
AP () =7 (1) = {ﬁ} @

/\[fm] = p}"‘] < 00, one has

() 5 (f) = co when T,(m, p) =0,
(ii) Uép](f) = 0o when ,(m, p) = 0,
(iii) 57 () = 0 when T,(m, p) = oo,
(iv) o¥)(f) = 0o when 7,(m, p) = co

Corollary 35. Let f be an entire function with 0 < )»[}"]

pj[cm] < 00. Then, for any entire function g with index-pairs

(m, p), where p and m are positive integers such that m > p,
one has

(i) 0P (f) = 0 when ?}’"l =0,
(ii) E[P] (f) = 0 when T[’"l =0,

=[m]

(iil) o f) =00 whenT Ty

= 00,

(iv) o f) = 0o when Tj[,m] = 00.
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