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We study some relative growth properties of entire functions with respect to another entire function on the basis of generalized
relative type and generalized relative weak type.

1. Introduction

A single valued function of one complex variable which
is analytic in the finite complex plane is called an integral
(entire) function. For example exp 𝑧, sin 𝑧, and cos 𝑧 are
examples of entire functions. In the value distribution theory
one studies how an entire function assumes some values and
the influence of assuming certain values in some specific
manner on a function. In 1926 Rolf Nevanlinna initiated
the value distribution theory of entire functions. This value
distribution theory is a prominent branch of complex analysis
and is the prime concern of the paper. Perhaps the Funda-
mental Theorem of Classical Algebra which states that “if 𝑓
is a polynomial of degree 𝑛 with real or complex coefficients,
then the equation 𝑓(𝑧) = 0 has at least one root” is the most
well known value distribution theorem.

The value distribution theory deals with various aspects
of the behavior of entire functions one of which is the study
of comparative growth properties. For any entire function 𝑓,
the maximummodulus of 𝑓 is the function𝑀𝑓(𝑟) defined as

𝑀𝑓 (𝑟) = max
|𝑧|=𝑟

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧)

󵄨
󵄨
󵄨
󵄨
. (1)

Similarly function 𝑀𝑔(𝑟) is defined for another entire
function 𝑔. The ratio 𝑀𝑓(𝑟)/𝑀𝑔(𝑟) as 𝑟 → ∞ evaluates
the growth of 𝑓 with respect to 𝑔 in terms of their maximum
moduli.

However, the order of an entire function 𝑓 which is
generally used in computational purpose is defined in terms
of the growth of 𝑓 with respect to exp 𝑧 function as

𝜌𝑓 = lim sup
𝑟→∞

log log𝑀𝑓 (𝑟)
log log𝑀exp 𝑧 (𝑟)

= lim sup
𝑟→∞

log log𝑀𝑓 (𝑟)
log 𝑟

.

(2)

Bernal [1, 2] introduced the relative order between two
entire functions to avoid comparing growth just with exp 𝑧,
extending the notion of relative order as cit.op. Lahiri and
Banerjee [3] introduced the definition of generalized relative
order. In the case of generalized relative order, it therefore
seems reasonable to define suitably the generalized relative
type (generalized relative weak type) of an entire function
with respect to another entire function in order to compare
the relative growth of two entire functions having the same
nonzero finite generalized relative order (generalized relative
lower order) with respect to another entire function. In
this connection Datta et al. [4] introduced the definition of
generalized relative type (generalized relative weak type) of an
entire function with respect to another entire function.

For entire functions, the notions of the growth indicators
such as order and type (weak type) are classical in complex
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analysis and, during the past decades, several researchers
have already been exploring them in the area of comparative
growth properties of composite entire functions in different
directions using the classical growth indicators. But, at that
time, the concepts of relative order (generalized relative
orders), relative type (generalized relative type), and relative
weak type (generalized relative weak type) of entire functions
and their technical advantages of not comparing with the
growth of exp 𝑧 are not at all known to the researchers of
this area. Therefore the studies of the growth of composite
entire functions in the light of their relative order (generalized
relative orders), relative type (generalized relative type), and
relative weak type (generalized relative weak type) are themain
concern of this paper. In fact some light has already been
thrownon such type ofworks byDatta et al. in [4–8]. Actually,
in this paper, we study some relative growth properties of
entire functions with respect to another entire function on
the basis of generalized relative type and generalized relative
weak type.

2. Notation and Preliminary Remarks

Our notations are standard within the theory of Nevanlinna’s
value distribution of entire functions and therefore we do not
explain those in detail as available in [9]. In the sequel the
following two notations are used:

log[𝑘]𝑥 = log (log[𝑘−1]𝑥) for 𝑘 = 1, 2, 3, . . . ;

log[0]𝑥 = 𝑥,

exp[𝑘]𝑥 = exp (exp[𝑘−1]𝑥) for 𝑘 = 1, 2, 3, . . . ;

exp[0]𝑥 = 𝑥.

(3)

Taking this into account, Juneja et al. [10] defined the
(𝑝, 𝑞)th order and (𝑝, 𝑞)th lower order of an entire function
𝑓, respectively, as follows:

𝜌𝑓 (𝑝, 𝑞) = lim sup
𝑟→∞

log[𝑝]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

𝜆𝑓 (𝑝, 𝑞) = lim inf
𝑟→∞

log[𝑝]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

(4)

where 𝑝, 𝑞 are any two positive integers with 𝑝 ≥ 𝑞.
These definitions extended the definitions of order 𝜌𝑓 and

lower order 𝜆𝑓 of an entire function 𝑓 which are classical in
complex analysis for integers 𝑝 = 2 and 𝑞 = 1 since these
correspond to the particular case 𝜌𝑓(2, 1) = 𝜌𝑓 and 𝜆𝑓(2, 1) =
𝜆𝑓. Further, for 𝑝 = 𝑙 and 𝑞 = 1, the above definitions reduce
to generalized order 𝜌[𝑙]

𝑓
[11] (resp., generalized lower order

𝜆
[𝑙]
𝑓
).

In this connection let us recall that if 0 < 𝜌𝑓(𝑝, 𝑞) < ∞,
then the following properties hold:

𝜌𝑓 (𝑝 − 𝑛, 𝑞) = ∞ for 𝑛 < 𝑝,

𝜌𝑓 (𝑝, 𝑞 − 𝑛) = 0 for 𝑛 < 𝑞,

𝜌𝑓 (𝑝 + 𝑛, 𝑞 + 𝑛) = 1 for 𝑛 = 1, 2, . . . .

(5)

Similarly, for 0 < 𝜆𝑓(𝑝, 𝑞) < ∞, one can easily verify that

𝜆𝑓 (𝑝 − 𝑛, 𝑞) = ∞ for 𝑛 < 𝑝,

𝜆𝑓 (𝑝, 𝑞 − 𝑛) = 0 for 𝑛 < 𝑞,

𝜆𝑓 (𝑝 + 𝑛, 𝑞 + 𝑛) = 1 for 𝑛 = 1, 2, . . . .

(6)

Recalling that for any pair of integer numbers 𝑚, 𝑛 the
Kronecker function is defined by 𝛿𝑚,𝑛 = 1 for 𝑚 = 𝑛 and
𝛿𝑚,𝑛 = 0 for 𝑚 ̸= 𝑛, the aforementioned properties provide
the following definition.

Definition 1 (see [10]). An entire function 𝑓 is said to have
index-pair (1, 1) if 0 < 𝜌𝑓(1, 1) < ∞. Otherwise, 𝑓 is said
to have index-pair (𝑝, 𝑞) ̸= (1, 1), 𝑝 ≥ 𝑞 ≥ 1, if 𝛿𝑝−𝑞,0 <
𝜌𝑓(𝑝, 𝑞) < ∞ and 𝜌𝑓(𝑝 − 1, 𝑞 − 1) ∉ R+.

Definition 2 (see [10]). An entire function 𝑓 is said to have
lower index-pair (1, 1) if 0 < 𝜆𝑓(1, 1) < ∞. Otherwise, 𝑓 is
said to have lower index-pair (𝑝, 𝑞) ̸= (1, 1), 𝑝 ≥ 𝑞 ≥ 1, if
𝛿𝑝−𝑞,0 < 𝜆𝑓(𝑝, 𝑞) < ∞ and 𝜆𝑓(𝑝 − 1, 𝑞 − 1) ∉ R+.

Remark 3. An entire function 𝑓 of index-pair (𝑝, 𝑞) is said to
be of regular (𝑝, 𝑞)-growth if its (𝑝, 𝑞)th order coincides with
its (𝑝, 𝑞)th lower order, otherwise 𝑓 is said to be of irregular
(𝑝, 𝑞)-growth.

To compare the growth of entire functions having the
same (𝑝, 𝑞)th order, Juneja et al. [12] also introduced the
concepts of (𝑝, 𝑞)th type and (𝑝, 𝑞)th lower type in the
following manner.

Definition 4 (see [12]). The (𝑝, 𝑞)th type and the (𝑝, 𝑞)th lower
type of entire function 𝑓 having finite positive (𝑝, 𝑞)th order
𝜌𝑓(𝑝, 𝑞) (𝑏 < 𝜌𝑓(𝑝, 𝑞) < ∞) are defined as

𝜎𝑓 (𝑝, 𝑞) = lim sup
𝑟→∞

log[𝑝−1]𝑀𝑓 (𝑟)

(log[𝑞−1]𝑟)
𝜌𝑓(𝑝,𝑞)

,

𝜎𝑓 (𝑝, 𝑞) = lim inf
𝑟→∞

log[𝑝−1]𝑀𝑓 (𝑟)

(log[𝑞−1]𝑟)
𝜌𝑓(𝑝,𝑞)

,

0 ≤ 𝜎𝑓 ≤ 𝜎𝑓 ≤ ∞,

(7)

where 𝑝, 𝑞 are any two positive integers, 𝑏 = 1 if 𝑝 = 𝑞, and
𝑏 = 0 for 𝑝 > 𝑞.

Remark 5. For 𝑝 = 𝑙 and 𝑞 = 1, the above definitions reduce
to generalized type 𝜎[𝑙]

𝑓
and generalized lower type 𝜎[𝑙]

𝑓
of an
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entire function 𝑓.Moreover, when 𝑝 = 2 and 𝑞 = 1, then 𝜎[2]
𝑓

and 𝜎[2]
𝑓

are correspondingly denoted as 𝜎𝑓 and 𝜎𝑓 which are,
respectively, known as type and lower type of entire 𝑓.

Now we introduce the following definitions in order to
determine the relative growth of two entire functions having
the same nonzero finite (𝑝, 𝑞)th lower order in the following
manner.

Definition 6. The (𝑝, 𝑞)th weak type 𝜏𝑓(𝑝, 𝑞) and the growth
indicator 𝜏𝑓(𝑝, 𝑞) of an entire function 𝑓 having finite
positive (𝑝, 𝑞)th lower order 𝜆𝑓(𝑝, 𝑞) (𝑏 < 𝜆𝑓(𝑝, 𝑞) < ∞)

are defined by

𝜏𝑓 (𝑝, 𝑞) = lim inf
𝑟→∞

log[𝑝−1]𝑀𝑓 (𝑟)

(log[𝑞−1]𝑟)
𝜆𝑓(𝑝,𝑞)

,

𝜏𝑓 (𝑝, 𝑞) = lim sup
𝑟→∞

log[𝑝−1]𝑀𝑓 (𝑟)

(log[𝑞−1]𝑟)
𝜆𝑓(𝑝,𝑞)

,

0 < 𝜆𝑓 (𝑝, 𝑞) < ∞,

(8)

where 𝑝, 𝑞 are any two positive integers, 𝑏 = 1 if 𝑝 = 𝑞, and
𝑏 = 0 for 𝑝 > 𝑞.

Remark 7. If we consider 𝑝 = 𝑙 and 𝑞 = 1 in the above
definitions, then the growth indicators 𝜏𝑓(𝑙, 1) and 𝜏𝑓(𝑙, 1) are
correspondingly denoted as 𝜏[𝑙]

𝑓
and 𝜏

[𝑙]
𝑓
. Further, for 𝑝 = 2

and 𝑞 = 1, the above definition reduces to the classical
definition as established by Datta and Jha [13]. Also 𝜏𝑓 and
𝜏𝑓 stand for 𝜏[2]

𝑓
and 𝜏[2]
𝑓
.

For any two entire functions 𝑓 and 𝑔, Bernal [1, 2]
initiated the definition of relative order of 𝑓 with respect to
𝑔, indicated by 𝜌𝑔(𝑓), as follows:

𝜌𝑔 (𝑓)

= inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (𝑟
𝜇
) , ∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

,

(9)

which keeps away from comparing growth just with exp 𝑧
to find out order of entire functions as we see earlier and of
course this definition corresponds with the classical one [14]
for 𝑔 = exp 𝑧.

Remark 8. In line with the above definition, one may define
the relative lower order of 𝑓 with respect to 𝑔, denoted by
𝜆𝑔(𝑓), as

𝜆𝑔 (𝑓) = lim inf
𝑟→∞

log𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

. (10)

Extending this notion, Lahiri and Banerjee [3] gave a
more generalized concept of relative order in the following
way.

Definition 9 (see [3]). If 𝑙 ≥ 1 is a positive integer, then the
𝑙th generalized relative order of 𝑓 with respect to 𝑔, denoted
by 𝜌[𝑙]𝑔 (𝑓), is defined by

𝜌
[𝑙]
𝑔 (𝑓) = inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (exp

[𝑙−1]
𝑟
𝜇
) , ∀𝑟

> 𝑟0 (𝜇) > 0} = lim sup
𝑟→∞

log[𝑙]𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

.

(11)

Clearly 𝜌[1]𝑔 (𝑓) = 𝜌𝑔(𝑓) and 𝜌
[1]
exp 𝑧(𝑓) = 𝜌𝑓.

Remark 10. Likewise one can define the generalized relative
lower order of 𝑓 with respect to 𝑔 denoted by 𝜆[𝑙]𝑔 (𝑓) as

𝜆
[𝑙]
𝑔 (𝑓) = lim inf

𝑟→∞

log[𝑙]𝑀−1𝑔 𝑀𝑓 (𝑟)
log 𝑟

. (12)

Moreover to compare the relative growth of two entire
functions having the same nonzero finite generalized relative
order with respect to another entire function, Datta et al.
[4] introduced the definition of generalized relative type and
generalized relative lower type of an entire function with
respect to another entire function, which are as follows.

Definition 11 (see [4]). Assume that 𝑓 and 𝑔 are entire
functions with 0 < 𝜌

[𝑙]
𝑔 (𝑓) < ∞.The generalized relative type

𝜎
[𝑙]
𝑔 (𝑓) and generalized relative lower type 𝜎[𝑙]𝑔 (𝑓) of 𝑓 with

respect to 𝑔 are defined as

𝜎
[𝑙]
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑙−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑙]𝑔 (𝑓)

,

𝜎
[𝑙]
𝑔 (𝑓) = lim inf

𝑟→∞

log[𝑙−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑙]𝑔 (𝑓)

.

(13)

For 𝑙 = 2, Definition 11 reduces to classical definition as
established by Roy [15].

Further, to determine the relative growth of two entire
functions having the same nonzero finite generalized relative
lower order with respect to another entire function, Juneja et
al. [10] introduced the concepts of generalized relative weak
type and growth indicator of an entire function with respect
to another entire function in the following manner.

Definition 12 (see [4]). The generalized relative weak type
𝜏
[𝑙]
𝑔 (𝑓) and the growth indicator 𝜏

[𝑙]
𝑔 (𝑓) of an entire function𝑓

with respect to another entire function𝑔having finite positive
generalized relative lower order 𝜆[𝑙]𝑔 (𝑓) are defined as

𝜏
[𝑙]
𝑔 (𝑓) = lim inf

𝑟→∞

log[𝑙−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜆[𝑙]𝑔 (𝑓)

,

𝜏
[𝑙]
𝑔 (𝑓) = lim sup

𝑟→∞

log[𝑙−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜆[𝑙]𝑔 (𝑓)

,

0 < 𝜆
[𝑙]
𝑔 (𝑓) < ∞.

(14)
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Remark 13. For 𝑙 = 2, Definition 12 reduces to the classical
definition as established by Datta and Biswas [8].

3. Lemmas

In this section we present two lemmas which will be needed
in the sequel.

Lemma 14 (see [16]). Let 𝑓 be an entire function with 0 <

𝜆
[𝑚]
𝑓

≤ 𝜌
[𝑚]
𝑓

< ∞ and let 𝑔 be entire of regular (𝑚, 𝑝)-growth,
where 𝑝 and𝑚 are positive integers such that𝑚 ≥ 𝑝. Then

𝜌
[𝑝]
𝑔 (𝑓) =

𝜌
[𝑚]
𝑓

𝜌𝑔 (𝑚, 𝑝)
,

𝜆
[𝑝]
𝑔 (𝑓) =

𝜆
[𝑝]

𝑓

𝜆𝑔 (𝑚, 𝑝)
.

(15)

Lemma 15 (see [16]). Let 𝑓 be an entire function with 0 <

𝜆
[𝑚]
𝑓

= 𝜌
[𝑚]
𝑓

< ∞ growth and let 𝑔 be entire with 0 ≤

𝜆𝑔(𝑚, 𝑝) ≤ 𝜌𝑔(𝑚, 𝑝) < ∞, where 𝑝 and𝑚 are positive integers
such that𝑚 ≥ 𝑝.Then

𝜆
[𝑝]
𝑔 (𝑓) =

𝜌
[𝑚]
𝑓

𝜌𝑔 (𝑚, 𝑝)
,

𝜌
[𝑝]
𝑔 (𝑓) =

𝜆
[𝑝]

𝑓

𝜆𝑔 (𝑚, 𝑝)
.

(16)

4. Main Results

In this section we present the main results of the paper.

Theorem 16. Let 𝑓 be any entire function with 0 < 𝜌
[𝑚]
𝑓

< ∞

and let 𝑔 be any entire function with index-pairs (𝑚, 𝑝), where
𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝. Also let 𝑔 be of
regular (𝑚, 𝑝)-growth. Then

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

≤ 𝜎
[𝑝]
𝑔 (𝑓)

≤ min
{
{

{
{

{

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)
}
}

}
}

}

≤ max
{
{

{
{

{

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)
}
}

}
}

}

≤ 𝜎
[𝑝]
𝑔 (𝑓)

≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(17)

Proof. Fix 𝜖 > 0. From the definitions of 𝜎[𝑚]
𝑓

and 𝜎
[𝑚]
𝑓

we
have for all sufficiently large values of 𝑟 that

𝑀𝑓 (𝑟) ≤ exp[𝑚−1] {(𝜎[𝑚]𝑓 + 𝜀) 𝑟
𝜌[𝑚]
𝑓 } , (18)

𝑀𝑓 (𝑟) ≥ exp[𝑚−1] {(𝜎[𝑚]𝑓 − 𝜀) 𝑟
𝜌[𝑚]
𝑓 } (19)

and also for a sequence of values of 𝑟 tending to infinity we
get that

𝑀𝑓 (𝑟) ≥ exp[𝑚−1] {(𝜎[𝑚]𝑓 − 𝜀) 𝑟
𝜌[𝑚]
𝑓 } , (20)

𝑀𝑓 (𝑟) ≤ exp[𝑚−1] {(𝜎[𝑚]𝑓 + 𝜀) 𝑟
𝜌[𝑚]
𝑓 } . (21)

Similarly, from the definitions of 𝜎𝑔(𝑚, 𝑝) and 𝜎𝑔(𝑚, 𝑝), it
follows for all sufficiently large values of 𝑟 that

𝑀𝑔 (𝑟) ≤ exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) + 𝜀) (log
[𝑝−1]

𝑟)

𝜌𝑔(𝑚,𝑝)
}

i.e., 𝑟 ≤ 𝑀
−1
𝑔 [exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

⋅ (log[𝑝−1]𝑟)
𝜌𝑔(𝑚,𝑝)

}]

i.e.,𝑀−1𝑔 (𝑟) ≥ exp[𝑝−1] [

[

(

log[𝑚−1]𝑟
(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]

]

,

(22)

𝑀𝑔 (𝑟) ≥ exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) − 𝜀) (log
[𝑝−1]

𝑟)

𝜌𝑔(𝑚,𝑝)
}

i.e., 𝑟 ≥ 𝑀
−1
𝑔 [exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

⋅ (log[𝑝−1]𝑟)
𝜌𝑔(𝑚,𝑝)

}]

i.e.,𝑀−1𝑔 (𝑟) ≤ exp[𝑝−1] [

[

(

log[𝑚−1]𝑟
(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]

]

,

(23)
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and for a sequence of values of 𝑟 tending to infinity we obtain
that

𝑀𝑔 (𝑟) ≥ exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) − 𝜀) (log
[𝑝−1]

𝑟)

𝜌𝑔(𝑚,𝑝)
}

i.e., 𝑟 ≥ 𝑀
−1
𝑔 [exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

⋅ (log[𝑝−1]𝑟)
𝜌𝑔(𝑚,𝑝)

}]

i.e.,𝑀−1𝑔 (𝑟) ≤ exp[𝑝−1] [

[

(

log[𝑚−1]𝑟
(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]

]

,

(24)

𝑀𝑔 (𝑟) ≤ exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) + 𝜀) (log
[𝑝−1]

𝑟)

𝜌𝑔(𝑚,𝑝)
}

i.e., 𝑟 ≤ 𝑀
−1
𝑔 [exp[𝑚−1] {(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

⋅ (log[𝑝−1]𝑟)
𝜌𝑔(𝑚,𝑝)

}]

i.e.,𝑀−1𝑔 (𝑟) ≥ exp[𝑝−1] [

[

(

log[𝑚−1]𝑟
(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]

]

.

(25)

Now, from (20) and in view of (22), we get for a sequence of
values of 𝑟 tending to infinity that

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ log[𝑝−1]𝑀−1𝑔 [exp[𝑚−1] {(𝜎[𝑚]𝑓 − 𝜀) 𝑟
𝜌[𝑚]
𝑓 }]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ log[𝑝−1]exp[𝑝−1]
[
[
[

[

(

log[𝑚−1]exp[𝑚−1] {(𝜎[𝑚]
𝑓

− 𝜀) 𝑟
𝜌[𝑚]
𝑓 }

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]
]
]

]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ [

[

(𝜎
[𝑚]
𝑓

− 𝜀)

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

⋅ 𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

i.e.,
log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

≥ [

[

(𝜎
[𝑚]
𝑓

− 𝜀)

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(26)

As 𝜀(> 0) is arbitrary, in view of Lemma 14, it follows that

lim sup
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌
[𝑝]
𝑔 (𝑓)

≥ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

i.e., 𝜎[𝑝]𝑔 (𝑓) ≥ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(27)

Analogously from (19) and in view of (25) it follows for a
sequence of values of 𝑟 tending to infinity that

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ log[𝑝−1]𝑀−1𝑔 [exp[𝑚−1] {(𝜎[𝑚]𝑓 − 𝜀) 𝑟
𝜌[𝑚]
𝑓 }]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ log[𝑝−1]exp[𝑝−1]
[
[
[

[

(

log[𝑚−1]exp[𝑚−1] {(𝜎[𝑚]
𝑓

− 𝜀) 𝑟
𝜌[𝑚]
𝑓 }

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]
]
]

]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ [

[

(𝜎
[𝑚]
𝑓

− 𝜀)

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

⋅ 𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

i.e.,
log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

≥ [

[

(𝜎
[𝑚]
𝑓

− 𝜀)

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(28)
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Since 𝜀(> 0) is arbitrary, we get from the above and Lemma 14
that

lim sup
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌
[𝑝]
𝑔 (𝑓)

≥ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

i.e., 𝜎[𝑝]𝑔 (𝑓) ≥ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(29)

Again in view of (23) we have from (18), for all sufficiently
large values of 𝑟, that

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ log[𝑝−1]𝑀−1𝑔 [exp[𝑚−1] {(𝜎[𝑚]𝑓 + 𝜀) 𝑟
𝜌[𝑚]
𝑓 }]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ log[𝑝−1]exp[𝑝−1]
[
[
[

[

(

log[𝑚−1]exp[𝑚−1] {(𝜎[𝑚]
𝑓

+ 𝜀) 𝑟
𝜌[𝑚]
𝑓 }

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]
]
]

]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ [

[

(𝜎
[𝑚]
𝑓

+ 𝜀)

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

⋅ 𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

i.e.,
log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

≤ [

[

(𝜎
[𝑚]
𝑓

+ 𝜀)

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(30)

Since 𝜀(> 0) is arbitrary, we obtain in view of Lemma 14 that

lim sup
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌
[𝑝]
𝑔 (𝑓)

≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

i.e., 𝜎[𝑝]𝑔 (𝑓) ≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(31)

Again, from (19) and in view of (22), we get for all sufficiently
large values of 𝑟 that

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ log[𝑝−1]𝑀−1𝑔 [exp[𝑚−1] {(𝜎[𝑚]𝑓 − 𝜀) 𝑟
𝜌[𝑚]
𝑓 }]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ log[𝑝−1]exp[𝑝−1]
[
[
[

[

(

log[𝑚−1]exp[𝑚−1] {(𝜎[𝑚]
𝑓

− 𝜀) 𝑟
𝜌[𝑚]
𝑓 }

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]
]
]

]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≥ [

[

(𝜎
[𝑚]
𝑓

− 𝜀)

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

⋅ 𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

i.e.,
log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

≥ [

[

(𝜎
[𝑚]
𝑓

− 𝜀)

(𝜎𝑔 (𝑚, 𝑝) + 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(32)
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As 𝜀(> 0) is arbitrary, it follows from the above and Lemma 14
that

lim inf
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌
[𝑝]
𝑔 (𝑓)

≥ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

i.e., 𝜎[𝑝]𝑔 (𝑓) ≥ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(33)

Also, in view of (24), we get from (18) that, for a sequence of
𝑟 tending to infinity,

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ log[𝑝−1]𝑀−1𝑔 [exp[𝑚−1] {(𝜎[𝑚]𝑓 + 𝜀) 𝑟
𝜌[𝑚]
𝑓 }]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ log[𝑝−1]exp[𝑝−1]
[
[
[

[

(

log[𝑚−1]exp[𝑚−1] {(𝜎[𝑚]
𝑓

+ 𝜀) 𝑟
𝜌[𝑚]
𝑓 }

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]
]
]

]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ [

[

(𝜎
[𝑚]
𝑓

+ 𝜀)

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

⋅ 𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

i.e.,
log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

≤ [

[

(𝜎
[𝑚]
𝑓

+ 𝜀)

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(34)

Since 𝜀(> 0) is arbitrary, we get from Lemma 14 and the above
that

lim inf
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌
[𝑝]
𝑔 (𝑓)

≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

i.e., 𝜎[𝑝]𝑔 (𝑓) ≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(35)

Similarly, from (21) and in view of (23), it follows for a
sequence of values of 𝑟 tending to infinity that

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ log[𝑝−1]𝑀−1𝑔 [exp[𝑚−1] {(𝜎[𝑚]𝑓 + 𝜀) 𝑟
𝜌[𝑚]
𝑓 }]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ log[𝑝−1]exp[𝑝−1]
[
[
[

[

(

log[𝑚−1]exp[𝑚−1] {(𝜎[𝑚]
𝑓

+ 𝜀) 𝑟
𝜌[𝑚]
𝑓 }

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

)

1/𝜌𝑔(𝑚,𝑝)

]
]
]

]

i.e., log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟) ≤ [

[

(𝜎
[𝑚]
𝑓

+ 𝜀)

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

⋅ 𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

i.e.,
log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌[𝑚]
𝑓
/𝜌𝑔(𝑚,𝑝)

≤ [

[

(𝜎
[𝑚]
𝑓

+ 𝜀)

(𝜎𝑔 (𝑚, 𝑝) − 𝜀)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(36)
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As 𝜀(> 0) is arbitrary, we obtain fromLemma 14 and the above
that

lim inf
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

𝑟
𝜌
[𝑝]
𝑔 (𝑓)

≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

i.e., 𝜎[𝑝]𝑔 (𝑓) ≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(37)

Thus the theorem follows from (27), (29), (31), (33), (35), and
(37).

In view ofTheorem 16, one can easily verify the following
corollaries.

Corollary 17. Let𝑓 be an entire function such that𝜎[𝑚]
𝑓

= 𝜎
[𝑚]
𝑓

and let 𝑔 be an entire function of regular (𝑚, 𝑝)-growth, where
𝑝 and𝑚 are all positive integers such that𝑚 ≥ 𝑝.Then

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(38)

Corollary 18. Let 𝑓 be an entire function with 0 < 𝜌
[𝑚]
𝑓

< ∞

and let 𝑔 be entire function of perfectly regular (𝑚, 𝑝)-growth,
where 𝑝 and𝑚 are positive integers with𝑚 ≥ 𝑝.Then

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(39)

In addition, if 𝜎[𝑚]
𝑓

= 𝜎
[𝑚]
𝑓

, then

𝜎
[𝑝]
𝑔 (𝑓) = 𝜎

[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

. (40)

Corollary 19. Let 𝑓 be an entire function with 0 < 𝜌
[𝑚]
𝑓

< ∞.

Then, for any entire function 𝑔,

(i) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜎𝑔(𝑚, 𝑝) = 0,

(ii) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜎𝑔(𝑚, 𝑝) = 0,

(iii) 𝜎[𝑝]𝑔 (𝑓) = 0 when 𝜎𝑔(𝑚, 𝑝) = ∞,

(iv) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜎𝑔(𝑚, 𝑝) = ∞,

where 𝑝 is any positive integer with 𝑚 ≥ 𝑝 and 𝑔 is of regular
(𝑚, 𝑝)-growth.

Corollary 20. Let 𝑔 be an entire function with regular
(𝑚, 𝑝)-growth where 𝑚, 𝑝 are positive integers with 𝑚 ≥ 𝑝.

Then, for any entire function 𝑓 with 0 < 𝜌
[𝑚]
𝑓

< ∞, one has

(i) 𝜎[𝑝]𝑔 (𝑓) = 0 when 𝜎[𝑚]
𝑓

= 0,

(ii) 𝜎[𝑝]𝑔 (𝑓) = 0 when 𝜎[𝑚]
𝑓

= 0,

(iii) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜎[𝑚]
𝑓

= ∞,

(iv) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜎[𝑚]
𝑓

= ∞.

In line with Theorem 16 and with the help of Lemma 15,
one can prove the following theorem, and therefore its proof
is omitted.

Theorem 21. Let 𝑓 be any entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞ and let 𝑔 be any entire function with index-pairs
(𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝.

Then

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

≤ 𝜏
[𝑝]
𝑔 (𝑓)

≤ min
{
{

{
{

{

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)
}
}

}
}

}

≤ max
{
{

{
{

{

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)
}
}

}
}

}

≤ 𝜏
[𝑝]
𝑔 (𝑓)

≤ [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(41)

In view ofTheorem 21, one can easily derive the following
corollaries.

Corollary 22. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞ and 𝜎[𝑚]
𝑓

= 𝜎
[𝑚]
𝑓

and let 𝑔 be an entire function with
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index-pairs (𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such
that𝑚 ≥ 𝑝. Then

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(42)

Corollary 23. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞ and let 𝑔 be an entire function with 𝜎𝑔(𝑚, 𝑝) =

𝜎𝑔(𝑚, 𝑝). Then

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

,

𝜏
𝑝
𝑔 (𝑓) =

[

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

.

(43)

In addition, if 𝜎[𝑚]
𝑓

= 𝜎
[𝑚]
𝑓

, then

𝜏
[𝑝]
𝑔 (𝑓) = 𝜏

[𝑝]
𝑔 (𝑓) = [

[

𝜎
[𝑚]
𝑓

𝜎𝑔 (𝑚, 𝑝)

]

]

1/𝜌𝑔(𝑚,𝑝)

. (44)

Corollary 24. Let 𝑔 be an entire function with index-pairs
(𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝.
Then, for any entire function 𝑓 with 0 < 𝜆

[𝑚]
𝑓

= 𝜌
[𝑚]
𝑓

< ∞, one
has

(i) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜎𝑔(𝑚, 𝑝) = 0,

(ii) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜎𝑔(𝑚, 𝑝) = 0,

(iii) 𝜏𝑝𝑔 (𝑓) = 0 when 𝜎𝑔(𝑚, 𝑝) = ∞,

(iv) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜎𝑔(𝑚, 𝑝) = ∞.

Corollary 25. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞. Then for any entire function 𝑔 with index-pairs
(𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝,
one has

(i) 𝜏[𝑝]𝑔 (𝑓) = 0 when 𝜎[𝑚]
𝑓

= 0,

(ii) 𝜏[𝑝]𝑔 (𝑓) = 0 when 𝜎[𝑚]
𝑓

= 0,

(iii) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜎[𝑚]
𝑓

= ∞,

(iv) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜎[𝑚]
𝑓

= ∞.

Similarly, in line with Theorems 16 and 21 and with the
help of Lemmas 14 and 15, one may easily prove the following
two theorems, and therefore their proofs are omitted.

Theorem 26. Let 𝑓 be any entire function with 0 < 𝜆
[𝑚]
𝑓

< ∞

and let 𝑔 be any entire function with index-pairs (𝑚, 𝑝), where
𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝. Also let 𝑔 be of
regular (𝑚, 𝑝)-growth. Then

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

≤ 𝜏
[𝑝]
𝑔 (𝑓)

≤ min
{
{

{
{

{

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

,

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)
}
}

}
}

}

≤ max
{
{

{
{

{

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

,

[

𝜏
𝑚
𝑓

𝜏𝑔 (𝑚, 𝑝)
]

1/𝜆𝑔(𝑚,𝑝)}
}

}
}

}

≤ 𝜏
[𝑝]
𝑔 (𝑓)

≤ [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

.

(45)

In view ofTheorem 26, the following corollaries may also
be obtained.

Corollary 27. Let𝑓 be an entire function such that 𝜏[𝑚]
𝑓

= 𝜏
[𝑚]
𝑓

and let 𝑔 be an entire function of regular (𝑚, 𝑝)-growth, where
𝑝 and 𝑚 are positive integers such that𝑚 ≥ 𝑝.Then

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

,

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

.

(46)

Corollary 28. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

< ∞

and let 𝑔 be an entire function of regular (𝑚, 𝑝)-growth, where
𝑝 and𝑚 are positive integers such that𝑚 ≥ 𝑝 with 𝜏𝑔(𝑚, 𝑝) =
𝜏𝑔(𝑚, 𝑝).Then

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

,

𝜏
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

.

(47)
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In addition, if 𝜏[𝑚]
𝑓

= 𝜏
[𝑚]
𝑓

, then

𝜏
[𝑝]
𝑔 (𝑓) = 𝜏

[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

. (48)

Corollary 29. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

< ∞

and let 𝑔 be an entire function of regular (𝑚, 𝑝)-growth, where
𝑝 and 𝑚 are positive integers such that𝑚 ≥ 𝑝.Then

(i) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜏𝑔(𝑚, 𝑝) = 0,

(ii) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜏𝑔(𝑚, 𝑝) = 0,

(iii) 𝜏[𝑝]𝑔 (𝑓) = 0 when 𝜏𝑔(𝑚, 𝑝) = ∞,

(iv) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜏𝑔(𝑚, 𝑝) = ∞.

Corollary 30. Let 𝑔 be an entire function with regular
(𝑚, 𝑝)-growth, where𝑝 and𝑚 are all positive integers such that
𝑚 ≥ 𝑝. Then, for any entire function 𝑓 with 0 < 𝜆

[𝑚]
𝑓

< ∞,
one has

(i) 𝜏[𝑝]𝑔 (𝑓) = 0 when 𝜏[𝑚]
𝑓

= 0,

(ii) 𝜏[𝑝]𝑔 (𝑓) = 0 when 𝜏[𝑚]
𝑓

= 0,

(iii) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜏[𝑚]
𝑓

= ∞,

(iv) 𝜏[𝑝]𝑔 (𝑓) = ∞ when 𝜏[𝑚]
𝑓

= ∞.

Theorem 31. Let 𝑓 be any entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞ and let 𝑔 be any entire function with index-pairs
(𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝.

Then

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

≤ 𝜎
[𝑝]
𝑔 (𝑓)

≤ min
{
{

{
{

{

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔

, [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)
}
}

}
}

}

≤ max
{
{

{
{

{

[

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔

, [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)
}
}

}
}

}

≤ 𝜎
[𝑝]
𝑔 (𝑓) ≤ [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

.

(49)

FromTheorem 31 the following corollaries are immediate.

Corollary 32. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞ and 𝜏[𝑚]
𝑓

= 𝜏
[𝑚]
𝑓

and let 𝑔 be an entire function with

index-pairs (𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such
that𝑚 ≥ 𝑝 and 𝜆𝑔(𝑚, 𝑝) > 0.Then

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

,

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

.

(50)

Corollary 33. Let 𝑓 be an entire function with regular growth
and let𝑔 be an entire functionwith 𝜏𝑔(𝑚, 𝑝) = 𝜏𝑔(𝑚, 𝑝), where
𝑝 and𝑚 are positive integers such that𝑚 ≥ 𝑝.Then

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

,

𝜎
[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

.

(51)

In addition, if 𝜏[𝑚]
𝑓

= 𝜏
[𝑚]
𝑓

, then

𝜎
[𝑝]
𝑔 (𝑓) = 𝜎

[𝑝]
𝑔 (𝑓) = [

[

𝜏
[𝑚]
𝑓

𝜏𝑔 (𝑚, 𝑝)

]

]

1/𝜆𝑔(𝑚,𝑝)

. (52)

Corollary 34. Let 𝑔 be an entire function with index-pairs
(𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝

and 𝜆𝑔(𝑚, 𝑝) > 0. Then, for any entire function 𝑓 with 0 <

𝜆
[𝑚]
𝑓

= 𝜌
[𝑚]
𝑓

< ∞, one has

(i) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜏𝑔(𝑚, 𝑝) = 0,

(ii) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜏𝑔(𝑚, 𝑝) = 0,

(iii) 𝜎[𝑝]𝑔 (𝑓) = 0 when 𝜏𝑔(𝑚, 𝑝) = ∞,

(iv) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜏𝑔(𝑚, 𝑝) = ∞.

Corollary 35. Let 𝑓 be an entire function with 0 < 𝜆
[𝑚]
𝑓

=

𝜌
[𝑚]
𝑓

< ∞. Then, for any entire function 𝑔 with index-pairs
(𝑚, 𝑝), where 𝑝 and 𝑚 are positive integers such that 𝑚 ≥ 𝑝,
one has

(i) 𝜎[𝑝]𝑔 (𝑓) = 0 when 𝜏[𝑚]
𝑓

= 0,

(ii) 𝜎[𝑝]𝑔 (𝑓) = 0 when 𝜏[𝑚]
𝑓

= 0,

(iii) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜏[𝑚]
𝑓

= ∞,

(iv) 𝜎[𝑝]𝑔 (𝑓) = ∞ when 𝜏[𝑚]
𝑓

= ∞.
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